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Abstract. In this paper, we introduce a novel iterative scheme called quasi-implicit itera-
tive scheme and study its stability as well as strong convergence for general class of maps in
a normed linear space. Further, we proved rate of convergence and gave a numerical example
to demonstrate that our iterative scheme is faster than semi-implicit iterative scheme and
many more other iterative schemes in this direction.
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1. Introduction

The most celebrated theorem for existence of fixed point for a self-mapping on a complete
metric space (Z, d) was initiated by Banach.

Definition 1.1. A self map Γ : Z −→ Z is called a contraction if for all x, y ∈ Z, there exists
ρ ∈ [0, 1) such that
(1.1) d(Γx,Γy) ≤ ρd(x, y).

Dwelling on Definition 1.1 and using metric space setting, Banach, in 1922, gave the fol-
lowing well-know contraction principle.

Theorem 1.2. Let Γ : Z −→ Z be a contraction mapping defined on a complete metric space
(Z, d). Then, Γ possesses a unique fixed point x⋆ ∈ Z. Furthermore, we have
(1.2) lim

n→∞
Γnx = x⋆

with

(1.3) d(Γnx, x⋆) ≤ ρn

1− ρ
d(x,Γx).

Theorem 1.1, in the company of its direct generalizations, has been a vital tool in applica-
tions for solving nonlinear functional equations. Despite its indispensable position in real-life
applications, Banach contraction principle suffers one major drawback ( the contractive condi-
tion (1.1) requires that Γ be continuous throughout Z). Motivated by this challenge, Kannan
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[3] established a fixed point theorem for which the restriction on Γ (continuity condition) is
not required. To be precise, he proved the following theorem:

Theorem 1.3. Let (Z, d) be a complete metric space and Γ : Z −→ Z a mapping with
ρ ∈ (0,

1

2
) such that for all x, y ∈ Z,

(1.4) d(Γx,Γy) ≤ ρ[d(x,Γx) + d(y,Γy)].

Then, Γ has a unique fixed in Z.

Example 1.4. (see [3]) Let Z = R be the set of real numbers with the usual metric and
Γ : R −→ R be defined by

Γx =

0. if x ∈ (−∞, 2]

−1

2
, if x ∈ (2,∞).

(1.5)

Then, Γ satisfies (1.4) with ρ = 0.2. Also, Γ is not continuous and FΓ = {0}.

Subsequent upon Kannan’s theorem, so many interesting results respecting different classes
of contractive-type conditions that do not require the continuity of Γ are now in literature, see
for example [4]. Further, in 1972, Zamfirescu [35] gave an interesting theorem which extended
both Banach’s and Kannan’s fixed point theorems, together with other similar results of this
kind, as follows:

Theorem 1.5. Let (Z, d) be a complete metric space and Γ : Z −→ Z a mapping such
that for each pair of points x, y ∈ Z, there exist the real numbers δ, ω and σ satisfying
0 < δ < 1, 0 < ω <

1

2
and 0 < σ <

1

2
such that at least one of the following statements holds

z1 : d(Γx,Γy) ≤ δd(x, y);

z2 : d(Γx,Γy) ≤ ω[d(x,Γx) + d(y,Γy)];

z3 : d(Γx,Γy) ≤ σ[d(x,Γy) + d(y,Γx)].

(1.6)

Then, Γ has a unique fixed point in Z.

The class of mapping defined by (1.6) has been adjudged to be the most general contractive-
like operators and has considerably attracted a lot of interest in recent times (see, for example,
[8], [9], [11], [14], [36], [14], [15], [24], [37] and the references therein).

In [30], it was shown that (1.6) implies

d(Γx,Γy) ≤ hmax{d(x, y), 1
2
[d(x,Γx) + d(y,Γy)],

1

2
[[d(x,Γy) + d(y,Γx)]]},(1.7)

and
(1.8) ∥Γx− Γy∥ ≤ ρ∥x− y∥+ 2ρ∥x− Γx∥,
where h, ρ ∈ [0, 1) and x, y ∈ Z. Note that (1.8) reduces to (1.1) if x is the fixed point of Γ.

Let E be a normed space, Q a nonempty, closed and convex subset of E and Γ : Q −→ Q
a self map of Q. For each x, y ∈ E, there exist L ≥ 0 and ρ ∈ [0, 1) such that
(1.9) ∥Γx− Γy∥ ≤ ρ∥x− y∥+ L∥x− Γx∥,
In 1995, Osilike [24] used the contractive condition defined by (1.9) to prove several gener-
alizations and extensions of most of the results contained in Rhoades [30]. Inspired by the
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results in [24], Imoru and Olatinwo [15] gave a generalisation of (1.9) as follows: For each
x, y ∈ E, there exists a monotone increasing function ϕ : R+ −→ R+ with ϕ(0) = 0 such that

(1.10) ∥Γx− Γy∥ ≤ ρ∥x− y∥+ ϕ(∥x− Γx∥),

However, Chidume and Olaleru [11] proved with several examples that (1.1) remains the most
general contractive condition and includes the likes of (1.8), (1.9) and (1.10).

Different studies have shown that virtually every physical, technical or biological process,
from celestial motion to bridge design, to interaction between neurons can be modeled in the
form

(1.11) Γ(t) = x.

Equation such as (1.11), which is used to solve real-life problems, may not necessarily be
directly solvable; that is, the close form solution may be impossible or practically difficult to
attain. Fortunately, (1.11) can equivalently be transformed into a fixed point problem of the
form

(1.12) Γ(t) = t,

whose solution can be obtained using approximate fixed point theorem-which, among other
things, could help to disclose some vital information on the existence or existence and unique-
ness of solution of the original equation.

Let (Z, d) be a complete metric space and Γ : Z −→ Z a selfmap of Z. We shall denote
the set of fixed points of Γ by FΓ = {q ∈ Z : Γq = q}. In the past few years, various
iteration schemes for which the fixed point of (1.12) could be approximately obtained have
been extensively studied, see for example, [2], [1], [10], [5], [7], [6], [37], [12], [17], [23], [19],
[25],[21],[16],[29], [27],[29], etc. In search of iterative scheme with better convergence rate,
authors in [37] introduced a new iterative scheme called semi-implicit iterative (SII) scheme
as follows: Let E be a normed space, Q a nonempty, closed and convex subset of E and
Γ : Q −→ Q a self map of Q. The semi-implicit iterative (SII) scheme {zv}∞n=1 is defined, for
arbitrary z0 ∈ E, by 

zn+1 = (1− αn)xn + αnΓzn

xn = (1− βn)yn + βnΓxn

yn = (1− γ)zn + γnΓyn,

(1.13)

where {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 ⊂ [0, 1]. They showed (through numerical example) that
the scheme (1.13) so introduced converges faster than the iterative schemes studied in ([38]
and [39]).

It is worthy to mention that in application, the stability of the iterative schemes studied
above is quite invaluable. The first researcher to demonstrate this respecting the Banach con-
traction conditions is Ostrowski [26]. Afterwards, several authors have developed this subject
basically because of its indispensable position in the current trend of computer programming.
Some recent works in this direction could be seen in [6],[10],[13],[27], [28],[26], [37], [36] and
the references therein.

Inspired and motivated by these developments, in this paper, we shall introduce a new
iteration scheme and then prove that our scheme is more efficient in terms of convergence
rate than the one studied in [37]. In addition, we establish strong convergence and stability
results of our iterative scheme in the setting of an arbitrary Banach space.
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2. Preliminary

The following definitions, lemmas and propositions will be needed to prove our main results.

Definition 2.1. (see [26], [36]) Let (Y, d) be a metric space and let Γ : Y −→ Y be a self-map
of Y . Let {xn}∞n=0 ⊆ Y be a sequence generated by an iteration scheme
(2.1) xn+1 = g(Γ, xn),

where x0 ∈ Y is the initial approximation and g is proper function. Suppeose {xn}∞n=0

converges to a fixed point q of Γ. Let {tn}∞n=0 ⊆ Y be an arbitrary sequence and set ϵn =
d(tn, g(Γ, tn)), n = 1, 2, · · · Then, the iteration scheme (2.1) is called Γ-stable if and only if
limn→∞ ϵn = 0 implies limn→∞ yn = q.

Note that in practice, the sequence {tn}∞n=0 could be obtained in the following manner: let
x0 ∈ Y . Set xn+1 = g(Γ, xn) and let t0 = x0. Now, x1 = g(Γ, x0) because of rounding in the
function Γ, and a new value t1 (approximately equal to x1) might be calculated to give t2, an
approximate value of g(Γ, t1). The procedure is continued to yield the sequence {tn}∞n=0, an
approximate sequence of {xn}∞n=0.

Lemma 2.2. (see, e.g., [36]) Let {τn}∞n=0 be a sequence of positive numbers such that τn →
0 as n → ∞. For 0 ≤ δ < 1, let {wn}∞n=0 be a sequence of positive numbers satisfying
wn+1 ≤ δwn + τn, n = 0, 1, 2, · · · Then, wn → 0 as n → ∞.

Lemma 2.3. (see, e.g, [37]) Let {ωn}∞n=1 and {σn}∞n=1 be two non-negative real sequences
satisfying the following inequality

ωn ≤ (1− λn)ωn + σn,

such that λn ∈ (0, 1) for all n ≥ n0,
∑∞

n=0 λn = ∞ and σn = o(λn). Then limn→∞ ωn=0.

Definition 2.4. (see, e.g, [37]) Let {cn}∞n=1 and {dn}∞n=1 be real convergent sequences with
limit c and d respectively. Then, cn is faster than dn if

lim
n→∞

|
∣∣∣ cn − c

dn − d

∣∣∣ = 0.

Definition 2.5. (see, e.g, [37]) Let {un}∞n=1 and {vn}∞n=1 be two fixed point iterations that
converge to the same fixed point q on a nonlinear space Z such that the error estimates
|un−q| ≤ cn and |vn−q| ≤ dn are available such that {cn}∞n=1 and {dn}∞n=1 are two sequences
of positive integers that converge to zero. If cn converges faster than dn then we say that un
converges faster to q than vn.

3. Convergence Results

In this section, we introduce a new iterative scheme which we shall call quasi-implicit
iterative scheme. Let (X, ∥.∥) be a normed linear space, Z be a nonempty closed convex
subset of X and Γ : Z −→ Z be a self map of Z. Pick an arbitrary element z0 ∈ Z and define
the sequence {zn}∞n=0 iteratively as follows:

zn+1 = (1− δn)sn + δnΓsn

sn = (1− γn)Γtn + γnΓsn

tn = (1− αn)Γrn + αnΓtn

rn = (1− βn)zn + βnΓrn,

(3.1)
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where {δn}∞n=0, {γn}∞n=0, {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] with {δn}∞n=0 satisfying∑∞
n=0 δn = ∞.

Remark 3.1. Note that:
(1) If βn = 0 in (3.1), we have

zn+1 = (1− δn)sn + δnΓsn

sn = (1− γn)Γtn + γnΓsn

tn = (1− αn)Γzn + αnΓtn

(3.2)

(2) If αn = βn = 0 in (3.1), we obtain
zn+1 = (1− δn)sn + δnΓsn

sn = (1− γn)Γtn + γΓsn

tn = Γzn

(3.3)

(3) If δn = 1 and αn = βn = 0 in (3.1), we get
zn+1 = Γnsn

sn = (1− γn)Γtn + γnΓsn

tn = Γzn

(3.4)

Theorem 3.2. Let D be a nonempty convex and closed subset of an arbitrary Banach space
E and Γ : D −→ D be a mapping satisfying the inequality

(3.5) ∥Γs− Γr∥ ≤ ρ∥s− r∥,

where 0 ≤ ρ < 1. Pick a point z0 ∈ D, then the sequence {zn}∞n=0 defined by (3.1) converges
to the fixed point of Γ provided

∑∞
n=0 δn = ∞.

Proof. Theorem 1.1 above guarantees that Γ has a unique fixed point in D (say q). Using
(3.1) and (3.5), we estimate as follows:

∥zn+1 − q∥ ≤ (1− δn)∥zn − q∥+ δn∥Γsn − q∥
≤ (1− δn)∥zn − q∥+ δnρ∥sn − q∥.(3.6)

Since from (3.1) and (3.5)

∥sn − q∥ ≤ (1− γn)∥Γtn − q∥+ γn∥Γsn − q∥
≤ (1− γn)ρ∥tn − q∥+ γnρ∥sn − q∥,

it follows that

(3.7) ∥sn − q∥ ≤ (1− γn)ρ

1− γnρ
∥tn − q∥.

Again, from (3.1) and (3.5), we obtain

∥tn − q∥ ≤ (1− αn)∥Γrn − q∥+ αn∥Γtn − q∥
≤ (1− αn)ρ∥rn − q∥+ γnρ∥tn − q∥,

≤ (1− αn)ρ

1− αnρ
∥rn − q∥.(3.8)
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Furthermore, using (3.1) and (3.5), we get
∥rn − q∥ ≤ (1− βn)∥zn − q∥+ βn∥Γrn − q∥

≤ (1− βn)∥zn − q∥+ βnρ∥rn − q∥

≤ (1− βn)

1− βnρ
∥zn − q∥.(3.9)

Set
σn
ϵn

=
(1− γn)ρ

1− γnρ
so that

(3.10) 1− σn
ϵn

= 1− (1− γn)ρ

1− γnρ
=

1− ρ

1− γnρ
≥ 1− ρ.

(3.10) implies that

(3.11) σn
ϵn

≤ ρ.

By setting
σ⋆
n

ϵ⋆n
=

(1− αn)ρ

1− αnρ
,

σ⋆⋆
n

ϵ⋆⋆n
=

(1− βn)

1− βnρ
,

and following similar approach as in (3.10), we obtain

(3.12) σ⋆
n

ϵ⋆n
≤ ρ.

and

(3.13) σ⋆⋆
n

ϵ⋆⋆n
≤ 1− βn(1− ρ) < 1.

Putting (3.7), (3.8) and (3.9) into (3.6) and simplifying, using (3.11), (3.12) and (3.13), we
get

∥zn+1 − q∥ ≤ (1− δn)ρ
2∥zn − q∥+ δnρ

3∥zn − q∥
= [1− δn(1− ρ)]∥zn − q∥.(3.14)

By repeating similar process as in (3.14) for ∥zn − q∥, ∥zn−1 − q∥, ∥zn−2 − q∥, · · · , ∥zn−n − q∥,
substituting the results successively at the right hand side of (3.14) and simplifying, we obtain

∥zn+1 − q∥ ≤ ρ2(n+1)
n∏

ℓ=0

[1− δℓ(1− ρ)]∥z0 − q∥, n = 0, 1, · · ·(3.15)

Now, since 0 ≤ ρ < 1, δn ∈ [0.1] and
∑∞

n=0 δn = ∞, we have

ρ2(n+1)
n∏

ℓ=0

[1− δℓ(1− ρ)] = 0.

In view of the above information, we obtain from (3.15) that zn → q as n → ∞. Hence,
{zn}∞n=0 converges strongly to q. □
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The corollary below is a consequence of Theorem 3.1.

Corollary 3.3. Let D be a nonempty convex and closed subset of an arbitrary Banach space
E and Γ : D −→ D be a mapping satisfying the inequality
(3.16) ∥Γs− Γr∥ ≤ ρ∥s− r∥,
where 0 ≤ ρ < 1. Pick a point z0 ∈ D, then

(a) (3.2) converges strongly to the fixed point of Γ;
(b) (3.3) converges strongly to the fixed point of Γ;
(c) (3.4) converges strongly to the fixed point of Γ.

4. Stability Results

In this section, we show that the quasi-implicit iterative scheme defined by (3.1) is Γ-stable.

Theorem 4.1. Let E be a an arbitrary Banach space and Γ : E −→ E be a self map of E
with a fixed point satisfying the inequality
(4.1) ∥Γs− Γr∥ ≤ ρ∥s− r∥
for each s, r ∈ E. where 0 ≤ ρ < 1. Pick a point z0 ∈ D, then the sequence {zn}∞n=0 defined
by (3.1) with 0 < δ < δn, 0 < γ < γn, 0 < β < βn and 0 < α < αn is Γ-stable.

Proof. Let {wn}∞n=0, {un}∞n=0, {vn}∞n=0, {yn}∞n=0 be arbitrary sequences, where
vn = γnΓyn + (1− γn)Γun

un = αnΓun + (1− αn)Γwn

wn = βnΓwn + (1− βn)yn.

(4.2)

Define
(4.3) ξn = ∥yn+1 − (1− δn)vn − δnΓvn∥.
and suppose ξn → 0 as n → ∞. Using (5.1), we show that yn → q as n→∞.

Now, from (4.3), we get
∥yn+1 − q∥ ≤ ∥yn+1 − (1− δn)vn − δnΓvn∥+ ∥(1− δn)vn + δnΓvn − q∥

= ξn + ∥(1− δn)vn + δnΓvn − q∥
≤ ξn + (1− δn)∥vn − q∥+ δn∥Γvn − q∥
≤ ξn + (1− δn)∥vn − q∥+ δnρ∥vn − q∥(4.4)

Also, from (4.2), we obtain
∥vn − q∥ ≤ γn∥Γvn − q∥+ (1− γn)∥Γun − q∥

≤ γnρ∥vn − q∥+ (1− γn)ρ∥un − q∥

≤ (1− γn)ρ

1− γnρ
∥un − q∥.(4.5)

Furthermore, since
∥un − q∥ ≤ αn∥Γun − q∥+ (1− αn)∥Γwn − q∥

≤ γnρ∥un − q∥+ (1− αn)ρ∥wn − q∥

≤ (1− αn)ρ

1− αnρ
∥wn − q∥(4.6)
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and

∥wn − q∥ ≤ βn∥Γwn − q∥+ (1− βn)∥yn − q∥
≤ βnρ∥wn − q∥+ (1− βn)∥yn − q∥

≤ (1− βn)

1− βnρ
∥yn − q∥,(4.7)

it follows from (4.4) and (4.5) that

∥yn+1 − q∥ ≤ ξn + (1− δn)
((1− γn)ρ

1− γnρ

)((1− αn)ρ

1− αnρ

)((1− βn)

1− βnρ

)
∥yn − q∥

+δnρ
((1− γn)ρ

1− γnρ

)((1− αn)ρ

1− αnρ

)((1− βn)

1− βnρ

)
∥yn − q∥.(4.8)

(3.11), (3.12), (3.13) and (4.6) imply

∥yn+1 − q∥ ≤ ξn + (1− δn)ρ
2∥yn − q∥+ δnρ

3∥yn − q∥
= [1− δn(1− ρ)]ρ2∥yn − q∥+ ξn.(4.9)

From our assumption that ξn → 0 as n → ∞, Lemma 2.1 and (4.9), we conclude that
yn → q as n → ∞.

Conversely, let yn → q as n → ∞. We will now prove that ξn → 0 as n → ∞. Indeed, from
(4.3), we have

ξn = ∥yn+1 − q − [(1− δn)vn + δnΓvn − q]∥
≤ ∥yn+1 − q∥+ ∥(1− δn)vn + δnΓvn − q∥
≤ ∥yn+1 − q∥+ (1− δn)∥vn − q∥+ δn∥Γvn − q∥
≤ ∥yn+1 − q∥+ (1− δn)∥vn − q∥+ δnρ∥vn − q∥.(4.10)

Using (4.5), (4.6), (4.7) and simplifying via (3.11), (3.12) and (3.13), we get

ξn ≤ ∥yn+1 − q∥+ [1− δn(1− ρ)]ρ2∥.yn − q∥(4.11)

Since, yn → q as n → ∞, it follows from (4.11) that ξn → 0 as n → ∞. Consequently, the
quasi-implicit iterative scheme defined by (3.1) is Γ-stable. □

The corollary below follows directly from Theorem 4.1.

Corollary 4.2. Let E be a an arbitrary Banach space and Γ : E −→ E be a self map of E
with a fixed point satisfying the inequality

(4.12) ∥Γs− Γr∥ ≤ ρ∥s− r∥

for each s, r ∈ E. where 0 ≤ ρ < 1. Pick a point z0 ∈ D, then the sequence {zn}∞n=0 defined
by (3.2), (3.3) and (3.4) with 0 < δ < δn, 0 < γ < γn and 0 < α < αn is Γ-stable.

5. Rate of Convergence

In this section, we will show that the quasi-implicit iterative scheme (3.1) converges faster
than semi-implicit iterative scheme (which in turn is faster than implicit Mann iterative
scheme, implicit lshikawa iterative scheme and implicit S-iterative scheme, see [37] for details)
for general class of contractive mappings.
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Table 1. Comparison of the convergent rate of SII and QII: Γz =
x

2
.

n SEMI-IMPLICIT SCHEME (SII) QUASI-IMPLICIT SCHEME (QII)
1 1.000000 1.000000
2 0.305556 0.111111
3 0.093364 0.012346
4 0.028528 0.001372
5 0.008717 0.000152
6 0.002663 0.000017
7 0.000814 0.000002
8 0.000249 0.000000
9 0.000076 0.000000
10 0.000023 0.000000
12 0.000007 0.000000
13 0.000002 0.000000
14 0.000001 0.000000
15 0.000000 0.000000

Theorem 5.1. Let D be a nonempty, closed and convex subset of normed linear space (E, ∥, ∥)
and Γ : D −→ D be a self map of D with satisfying the inequality
(5.1) ∥Γs− Γr∥ ≤ ρ∥s− r∥
for each s, r ∈ E. where 0 ≤ ρ < 1. Pick a point z0 ∈ D. Let {zn}∞n=0 be a sequence
defined by (3.1) with {δn}∞n=0, {γn}∞n=0, {αn}∞n=0, {βn}∞n=0 ∈ [0, 1] such that

∑∞
n=0 δn = ∞ and

δ ≤ δi ≤ δn∀n ∈ N. Then {zn}∞n=0 converges faster to q than the iterative scheme (1.13).

Proof. From (3.15), and the assumption δ ≤ δi ≤ δn for some δ > 0, for all n ∈ N, we get

∥zn+1 − q∥ ≤ ρ2(n+1)
n∏

ℓ=0

[1− δℓ(1− ρ)]∥z0 − q∥

= ρ2(n+1)[1− δ(1− ρ)]∥z0 − q∥.(5.2)
Similarly, in (Bosede et al [37], Theorem 3.1), the authors proved that the iterative scheme
(1.13) is of the form

∥zn+1 − q∥ ≤
n∏

ℓ=0

[1− δℓ(1− ρ)]∥z0 − q∥.(5.3)

Now, since δ ≤ δℓ ≤ 1 for δ > 0 and for all n ∈ N, then from (5.3), we have

∥zn+1 − q∥ ≤
n∏

ℓ=0

[1− δℓ(1− ρ)]∥z0 − q∥

= [1− δ(1− ρ)]∥z0 − q∥.(5.4)
Put

λn = ρ2(n+1)[1− δ(1− ρ)]∥z0 − q∥,
ωn = [1− δ(1− ρ)]∥z0 − q∥
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and define

θn =
λn

ωn

=
ρ2(n+1)[1− δ(1− ρ)]∥z0 − q∥

[1− δ(1− ρ)]∥z0 − q∥
= ρ2(n+1),

Then, θn → 0 as n → ∞ since ρ ∈ [0, 1). Thus, the sequence {zn}∞n=0 defined (3.1) converges
faster than the semi-implicit iterative scheme defined by (1.13). □

Now, we show the validity of the above proof with the following example.

Example 5.2. (see [2]) Let E = [0, 1] and Γ : E −→ E be defined by Γx =
1

2
x, x ̸= 0. Taking

δn = γn = αn = βn = 1 − 1

n
for n ≥ 2, the comparison of the convergence of semi-implicit

iterative (SII) scheme and quasi-implicit iterative (QII) scheme to the fixed point q = 0 are
as given (with the initial point x = 1) above.

Conclusion

Using the above numerical example, it is observed that quasi-implicit iteration (QII) has
faster convergence rate than semi-implicit iteration (SII), which in turn has been proven in
[37] to be faster in convergence than implicit Mann iteration, implicit Ishikawa iteration and
implicit S-iteration.
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