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1. Introduction

The first study of Schur-convexity was done by Issai Schur in 1923. Since then numerous
articles have been written about it, see for exmple [3, 4, 9, 10]. Schur-convexity has many
important applications in analytic and geometric inequality, combinatorial analysis, combi-
natorial optimization, matrix theory, information theory, and other fields . We recall some
definitions as follows:
Definition 1.1. [1] Suppose that x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn. x is said to
be majorized by y (in symbols x ≺ y) if

k∑
i=1

x[i] ≤
k∑
i=1

y[i] k = 1, 2, . . . , n− 1,

and
n∑
i=1

x[i] =
n∑
i=1

y[i],

where x[i], denotes the i-th largest component in x.

Definition 1.2. [1] Let E ⊂ Rn, f : E → R is said to be Schur-convex function on E if x ≺ y
on E implies f(x) ≤ f(y). f is said to be Schur-concave if and only if −f is Schur-convex.

Definition 1.3. [1, 8] (i) A set E ⊂ Rn is called symmetric, if x ∈ E implies Px ∈ E for
every n× n permutation matrix P .
(ii) A function f : E → R is is said to be a symmetric function if f(Px) = f(x) for every
permutation matrix P , and for every x ∈ E.

Recall that a n× n square matrix P is said to be a permutation matrix if each row and
column has a single unite entry, and all other entries are zero. The following theorem called the
schur’s condition, is very useful for specifying Schur-convexity or Schur-concavity of functions.
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16 N. SAFAEI AND A. BARANI

Theorem 1.4. [1] Let E ⊂ Rn be a symmetric convex set with nonempty interior ( E◦ is the
interior of E), and f : E → R is a symmetric continuous function on E. If f is differentiable
on E◦, then f is Schur-convex (Schur-concave) on E◦ if and only if

(x1 − x2)

(
∂f

∂x1
− ∂f

∂x2

)
≥ 0 (≤ 0),

for every x = (x1, x2, . . . , xn) ∈ E◦.

In [5], S.S. Dragomir defined convex function on the co-ordinates (or co-ordinated convex
functions ) on the set [a, b]× [c, d] in R2 with a < b and c < d as follows:

Definition 1.5. A function f : [a, b]× [c, d]→ R is said to be convex on the co-ordinates on
[a, b]× [c, d] if for every y ∈ [c, d] and x ∈ [a, b], the partial mappings,

fy: [a, b]→ R, fy(u) = f(u, y),

and
fx: [c, d]→ R, fx(v) = f(x, v),

are convex. This means that for every (x, y), (z, w) ∈ [a, b]× [c, d] and t, s ∈ [0, 1],

f (tx+ (1− t)z, sy + (1− s)w) ≤ tsf(x, y) + s(1− t)f(z, y)

+ t(1− s)f(x,w) + (1− t)(1− s)f(z, w).

Clearly, every convex function is co-ordinated convex. Furthermore, there exist co-ordinated
convex functions which are not convex. The following Hermite-Hadamard type inequality for
co-ordinated convex functions was also proved in [5].

Theorem 1.6. Suppose that f : [a, b]×[c, d]→ R is convex on the co-ordinates on [a, b]×[c, d].
Then,

f

(
a+ b

2
,
c+ d

2

)
≤ 1

2

[
1

b− a

∫ b

a
f

(
x,
c+ d

2

)
dx+

1

d− c

∫ d

c
f

(
a+ b

2
, y

)
dy

]
≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c
f(x, y)dydx

≤ 1

4

[
1

b− a

∫ b

a
f(x, c)dx+

1

b− a

∫ b

a
f(x, d)dx

+
1

d− c

∫ d

c
f(a, y)dy +

1

d− c

∫ d

c
f(b, y)dy

]
≤ f(a, c) + f(a, d) + f(b, c) + f(b, d)

4
.

The above inequalities are sharp.

In [7], M.E. Özdemir defined convex function on a rectangular box Ω = [a, b]× [c, d]× [e, f ]
in R3 as follows: A function f : Ω → R is said to be convex on the co-ordinates on Ω if for
every (x, y) ∈ [a, b]× [c, d], (x, z) ∈ [a, b]× [e, f ] and (y, z) ∈ [c, d]× [e, f ], the partial mappings,

fz : [a, b]× [c, d]→ R, fz(u, v) = f(u, v, z), z ∈ [e, f ],

fy : [a, b]× [e, f ]→ R, fy(u,w) = f(u, y, w), y ∈ [c, d],

fx : [c, d]× [e, f ]→ R, fx(v, w) = f(x, v, w), x ∈ [a, b],

are convex. The following theorem is given in [7].
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Theorem 1.7. Suppose that f : Ω = [a, b]× [c, d]× [e, f ]→ R is convex on the co-ordinates
on Ω. Then one has the inequalities:

f

(
a+ b

2
,
c+ d

2
,
e+ f

2

)
≤ 1

(b− a)(d− c)(f − e)

∫ ∫ ∫
Ω
f(x, y, z)dydzdx

≤ 1

6

[
1

(b− a)(d− c)

∫ ∫
∆1

f(x, y, e)dydx

+
1

(b− a)(d− c)

∫ ∫
∆1

f(x, y, f)dydx

+
1

(b− a)(f − e)

∫ ∫
∆2

f(x, c, z)dzdx

+
1

(b− a)(f − e)

∫ ∫
∆2

f(x, d, z)dzdx

+
1

(d− c)(f − e)

∫ ∫
∆3

f(a, y, z)dzdy

+
1

(d− c)(f − e)

∫ ∫
∆3

f(b, y, z)dzdy

]
where ∆1 = [a, b]× [c, d], ∆2 = [a, b]× [e, f ] and ∆3 = [c, d]× [e, f ].

In [6] Elezović and Pečarić investigated the Schur-convexity on the upper and the lower
limit of the integral for the mean of convex function and proved the following important result
by using the Hermite-Hadamard inequality.

Theorem 1.8. Let f be a continuous function on an interval I, and

F (x, y) =

{
1

y−x
∫ y
x f(t)dt, x, y ∈ I, x 6= y,

f(x), x = y ∈ I.

Then F (x, y) is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on
I.

Let I ⊂ R be an open interval and f ∈ C2(I). In [3] Y. Chu et al. proved the following
theorem.

Theorem 1.9. Let f : I → R be a continuous function. The function

F (x, y) =

{
1

y−x
∫ y
x f(t)dt− f(x+y

2 ), x, y ∈ I, x 6= y,

0, x = y ∈ I,

is Schur-convex (Schur-concave) on I2 if and only if f is convex (concave) on I.

We recall the following lemma from [2], which is known as Leibniz’s Formula.

Lemma 1.10. Suppose that f : ∆ = [a, b]× [c, d]→ R and ∂f
∂t : [a, b]× [c, d]→ R are contin-

uous and α1, α2 : [c, d]→ [a, b] are differentiable functions. Then, the function ϕ : [c, d]→ R
defined by

ϕ(t) =

∫ α2(t)

α1(t)
f(x, t)dx,
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has a derivative for each t ∈ [c, d], which is given by

ϕ′(t) = f(α2(t), t)α′2(t)− f(α1(t), t)α′1(t) +

∫ α2(t)

α1(t)

∂f

∂t
(x, t)dx.

Moreover, we use the following lemma which will be useful in the sequal. A version of the
following lemma proved in [9].

Lemma 1.11. Let F (u, v) =
∫ v
u

∫ v
u

∫ v
u f(x, y, z)dxdydz, where

f(x, y, z),
∂

∂b

∫ v

u
f(x, y, z)dx,

and
∂

∂b

∫ v

u

∫ v

u
f(x, y, z)dxdy

are continuous on the cube Ω = [a, p]× [a, p]× [a, p] , u = u(b) and v = v(b) are differentiable
with a ≤ u(b) ≤ p and a ≤ v(b) ≤ p. Then,

(1.1)

∂F

∂b
=

(∫ v

u

∫ v

u
f(x, y, v)dxdy +

∫ v

u

∫ v

u
f(x, v, z)dxdz

+

∫ v

u

∫ v

u
f(v, y, z)dydz

)
v′(b)−

(∫ v

u

∫ v

u
f(x, y, u)dxdy

+

∫ v

u

∫ v

u
f(x, u, z)dxdz +

∫ v

u

∫ v

u
f(u, y, z)dydz

)
u′(b).

Proof. If G(u, v, y, z) =
∫ v
u f(x, y, z)dx and H(u, v, z) =

∫ v
u G(u, v, y, z)dy then F (u, v) =∫ v

u H(u, v, z)dz. Therefore by Lemma 1.10, we have

(1.2)
∂F

∂b
= H(u, v, v)v′(b)−H(u, v, u)u′(b) +

∫ v

u

∂H(u, v, z)

∂b
dz,

∂H(u, v, z)

∂b
=G(u, v, v, z)v′(b)−G(u, v, u, z)u′(b)(1.3)

+

∫ v

u

∂G(u, v, y, z)

∂b
dy,

(1.4)
∂G(u, v, y, z)

∂b
= f(v, y, z)v′(b)− f(u, y, z)u′(b).

By replacing (1.3) and (1.4) in (1.2) we obtained required result in (1.1). �

2. Main Results

In this section we prove new theorems like those Theorem 1.8 and Theorem 1.9 for co-
ordinated convex functions.

To reach our main results, we need the following two lemmas.

Lemma 2.1. Let Ω := [a1, b1] × [a1, b1] × [a1, b1] be a cube in R3 with a1 < b1, and the
function f : Ω→ R is continuous, and has continuous second order partial derivatives on Ω◦(
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the interior of Ω ). Choose a, b ∈ (a1, b1), with a < b, and let D := [a, b]× [a, b]. Suppose that
the function F : D → R is defined by

F (x, y) :=

{
1

(y−x)3

∫ y
x

∫ y
x

∫ y
x f(r, s, t)drdsdt, x 6= y, x, y ∈ [a, b],

f(x, x, x), x = y, x, y ∈ [a, b].

Then,

∂F

∂x

∣∣∣
(t0,t0)

=
∂F

∂y

∣∣∣
(t0,t0)

=
1

24

[
6
∂f

∂t
(t, t, t) |t0 +2

(
g1(t0, t0, t0) + g2(t0, t0, t0) + g3(t0, t0, t0)

+ f1(t0, t0, t0) + f2(t0, t0, t0) + f3(t0, t0, t0)
)]
,(2.1)

for all t0 ∈ [a, b] ,where

f1(u, v, t0 + t) =
∂f

∂t
(u, v, t0 + t),

f2(u, t0 + t, w) =
∂f

∂t
(u, t0 + t, w),

f3(t0 + t, v, w) =
∂f

∂t
(t0 + t, v, w),

and

g1(u, t0 + t, t0 + t) =
∂f

∂t
(u, t0 + t, t0 + t),

g2(t0 + t, v, t0 + t) =
∂f

∂t
(t0 + t, v, t0 + t),

g3(t0 + t, t0 + t, w) =
∂f

∂t
(t0 + t, t0 + t, w).

Proof. Fix t0 ∈ [a, b]. We put

h1(u, v, t0 + t) =
∂f1

∂t
(u, v, t0 + t),

h2(u, t0 + t, w) =
∂f2

∂t
(u, t0 + t, w),

h3(t0 + t, v, w) =
∂f3

∂t
(t0 + t, v, w).

By using the L’Hopital’s rule, and Lemmas 1.10, 1.11 we see that

∂F

∂x

∣∣∣
(t0,t0)

= lim
t→0

F (t0 + t, t0)− F (t0, t0)

t

= lim
t→0

1

t4

[∫ t0+t

t0

∫ t0+t

t0

∫ t0+t

t0

f(u, v, w)dudvdw − t3f(t0, t0)

]
= lim
t→0

1

4t3

[ ∫ t0+t

t0

∫ t0+t

t0

f(u, v, t0 + t)dudv +

∫ t0+t

t0

∫ t0+t

t0

f(u, t0 + t, w)dudw

+

∫ t0+t

t0

∫ t0+t

t0

f(t0 + t, v, w)dvdw − 3t2f(t0, t0, t0)

]
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(2.2)

= lim
t→0

1

12t2

[ ∫ t0+t

t0

f(u, t0 + t, t0 + t)du+

∫ t0+t

t0

f(t0 + t, v, t0 + t)dv

+

∫ t0+t

t0

∫ t0+t

t0

∂f

∂t
(u, v, t0 + t)dudv +

∫ t0+t

t0

f(u, t0 + t, t0 + t)du

+

∫ t0+t

t0

f(t0 + t, t0 + t, w)dw +

∫ t0+t

t0

∫ t0+t

t0

∂f

∂t
(u, t0 + t, w)dudw

+

∫ t0+t

t0

f(t0 + t, v, t0 + t)dv +

∫ t0+t

t0

f(t0 + t, t0 + t, w)dw

+

∫ t0+t

t0

∫ t0+t

t0

∂f

∂t
(t0 + t, v, w)dvdw − 6tf(t0, t0, t0)

]
= lim
t→0

1

24t

[
6f(t0 + t, t0 + t, t0 + t) + 2

∫ t0+t

t0

∂f

∂t
(u, t0 + t, t0 + t)du

+ 2

∫ t0+t

t0

∂f

∂t
(t0 + t, v, t0 + t)dv + 2

∫ t0+t

t0

∂f

∂t
(t0 + t, t0 + t, w)dw

+

∫ t0+t

t0

f1(u, t0 + t, t0 + t)du+

∫ t0+t

t0

f1(t0 + t, v, t0 + t)dv

+

∫ t0+t

t0

∫ t0+t

t0

h1(u, v, t0 + t)dudv +

∫ t0+t

t0

f2(u, t0 + t, t0 + t)du

+

∫ t0+t

t0

f2(t0 + t, t0 + t, w)dw +

∫ t0+t

t0

∫ t0+t

t0

h2(u, t0 + t, w)dudw

+

∫ t0+t

t0

f3(t0 + t, v, t0 + t)dv +

∫ t0+t

t0

f3(t0 + t, t0 + t, w)dw

+

∫ t0+t

t0

∫ t0+t

t0

h3(t0 + t, v, w)dvdw − 6f(t0, t0, t0)

]
=

1

24

[
6
∂f

∂t
(t, t, t) |t0 +2

(
g1(t0, t0, t0) + g2(t0, t0, t0) + g3(t0, t0, t0)

+ f1(t0, t0, t0) + f2(t0, t0, t0) + f3(t0, t0, t0

)]
.

By changing the role of x by y in (2.2), we obtain required results in (2.1). �

The proof of the following lemma is similar to once in lemma 2.1 hence we omit it.

Lemma 2.2. Let Ω := [a1, b1]×[a1, b1]×[a1, b1] be a cube in R3 with a1 < b1, and the function
f : Ω → R is continuous, and has continuous four order partial derivatives on Ω◦. Choose
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a, b ∈ (a1, b1), with a < b, and let D := [a, b]× [a, b]. Suppose that the function G : D → R is
defined by

G(x, y) :=


1

(y−x)3

∫ y
x

∫ y
x

∫ y
x f(r, s, t)drdsdt

−f(x+y
2 , x+y

2 , x+y
2 ), x 6= y, x, y ∈ [a, b],

0, x = y, x, y ∈ [a, b].

Then,

∂G

∂x

∣∣∣
(t0,t0)

=
∂G

∂y

∣∣∣
(t0,t0)

=
1

24

[
− 3

∂f

∂t
(t, t, t) |t0 +2

(
g1(t0, t0, t0) + g2(t0, t0, t0) + g3(t0, t0, t0)

+ f1(t0, t0, t0) + f2(t0, t0, t0) + f3(t0, t0, t0

)]
,

for all t0 ∈ [a, b], where

f1(u, v, t0 + t) =
∂f

∂t
(u, v, t0 + t),

f2(u, t0 + t, w) =
∂f

∂t
(u, t0 + t, w),

f3(t0 + t, v, w) =
∂f

∂t
(t0 + t, v, w),

and

g1(u, t0 + t, t0 + t) =
∂f

∂t
(u, t0 + t, t0 + t),

g2(t0 + t, v, t0 + t) =
∂f

∂t
(t0 + t, v, t0 + t),

g3(t0 + t, t0 + t, w) =
∂f

∂t
(t0 + t, t0 + t, w).

We now derive the next results for co-ordinates convex functions.

Theorem 2.3. Let D := [a1, b1] × [a1, b1] × [a1, b1] be a cube in R3 with a1 < b1, and the
function f : D → R is continuous, and has continuous second order partial derivatives on
D◦. Choose a, b ∈ (a1, b1), with a < b, and let ∆ := [a, b] × [a, b] × [a, b]. Suppose that f is
convex on the co-ordinates on ∆, then the function F : [a, b]× [a, b]→ R defined by

(2.3) F (x, y) :=

{
1

(y−x)3

∫ y
x

∫ y
x

∫ y
x f(r, s, t)drdsdt, x 6= y, x, y ∈ [a, b],

f(x, x, x), x = y, x, y ∈ [a, b].

is Schur-convex on [a, b]× [a, b].

Proof. Case 1: If x, y ∈ [a, b], with x = y. Then Lemma 2.1 implies that

(y − x)

(
∂F

∂y
− ∂F

∂x

)
= 0.
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Case 2: If x, y ∈ [a, b], with x 6= y. Then by Lemma 1.11 we have

∂F

∂y
=

−3

(y − x)4

∫ y

x

∫ y

x

∫ y

x
f(r, s, t)drdsdt

+
1

(y − x)3

[ ∫ y

x

∫ y

x
f(r, s, y)drds

+

∫ y

x

∫ y

x
f(r, y, t)drdt+

∫ y

x

∫ y

x
f(y, s, t)dsdt

]
,

and

∂F

∂x
=

3

(y − x)4

∫ y

x

∫ y

x

∫ y

x
f(r, s, t)drdsdt

− 1

(y − x)3

[ ∫ y

x

∫ y

x
f(r, s, x)drds

+

∫ y

x

∫ y

x
f(r, x, t)drdt+

∫ y

x

∫ y

x
f(x, s, t)dsdt

]
.

Thus, (
∂F

∂y
− ∂F

∂x

)
=

−6

(y − x)4

∫ y

x

∫ y

x

∫ y

x
f(r, s, t)drdsdt

+
1

(y − x)3

[ ∫ y

x

∫ y

x

(
f(r, s, x) + f(r, s, y)

)
drds

+

∫ y

x

∫ y

x

(
f(r, x, t) + f(r, y, t)

)
drdt

+

∫ y

x

∫ y

x

(
f(x, s, t) + f(y, s, t)

)
dsdt

]
.

Then (y − x)
(
∂F
∂y −

∂F
∂x

)
is nonnegative if

1

y − x

∫ y

x

∫ y

x

∫ y

x
f(r, s, t)drdsdt

≤ 1

6

[ ∫ y

x

∫ y

x

(
f(r, s, x) + f(r, s, y)

)
drds

+

∫ y

x

∫ y

x

(
f(r, x, t) + f(r, y, t)

)
drdt

+

∫ y

x

∫ y

x

(
f(x, s, t) + f(y, s, t)

)
dsdt

]
.

Since f is convex on the co-ordinates the last inequality holds by Theorem 1.7. Therefore by
Theorem 1.4 the function F is Schur-convex. �

The following theorem also holds:

Theorem 2.4. Let D := [a1, b1] × [a1, b1] × [a1, b1] be a cube in R3 with a1 < b1, and the
function f : D → R is continuous, and has continuous four order partial derivatives on D◦.
Choose a, b ∈ (a1, b1), with a < b, and let ∆ := [a, b]× [a, b]× [a, b]. Suppose that f is convex
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on the co-ordinates on ∆, then the function G : [a, b]× [a, b]→ R defined by

(2.4) G(x, y) :=


1

(y−x)3

∫ y
x

∫ y
x

∫ y
x f(r, s, t)drdsdt

−f(x+y
2 , x+y

2 , x+y
2 ), x 6= y, x, y ∈ [a, b],

0, x = y, x, y ∈ [a, b].

is Schur-convex on [a, b]× [a, b].

Proof. Case 1: If x, y ∈ [a, b], with x = y. Then Lemma 2.2 implies that

(y − x)

(
∂G

∂y
− ∂G

∂x

)
= 0

Case 2: If x, y ∈ [a, b], with x 6= y. Then by Lemma 1.11 we have

(y − x)

(
∂G

∂y
− ∂G

∂x

)
≥ 0,

if

1

y − x

∫ y

x

∫ y

x

∫ y

x
f(r, s, t)drdsdt

≤ 1

6

[ ∫ y

x

∫ y

x

(
f(r, s, x) + f(r, s, y)

)
drds

+

∫ y

x

∫ y

x

(
f(r, x, t) + f(r, y, t)

)
drdt

+

∫ y

x

∫ y

x

(
f(x, s, t) + f(y, s, t)

)
dsdt

]
.

The result follows from Theorem 1.7 and Theorem 1.4. �

In the following examples we show that the converses of theorems 2.3 and 2.4 are not true
in general.

Example 2.5. Consider the non co-ordinates convex function,

f(r, s, t) := r2 − 1

2
s2 + t2, r, t, s ∈ [1, 2].

It is easy to see that for the function F was defined in (2.3) we have F (x, x) = 3
2x

2, for every
x ∈ [1, 2], and

F (x, y) =
1

(y − x)3

∫ y

x

∫ y

x

∫ y

x
(r2 − 1

2
s2 + t2)drdsdt =

1

2
(x2 + y2 + xy),

for every x, y ∈ [1, 2], with x 6= y. Thus,

F (x, y) =
1

2
(x2 + y2 + xy),

for every x, y ∈ [1, 2]. Clearly F is symmetric, continuous and differentiable on [1, 2]× [1, 2].
If x, y ∈ [1, 2], we have

(y − x)

(
∂F

∂y
− ∂F

∂x

)
=

1

2
(y − x)2 ≥ 0.

Therefore by Theorem 1.4 F is Schur-convex.
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Remark 2.6. It is easy to see that for the function f was defined in example 2.5 each of the
inequalities in theorem 1.7 is valid while f is not convex on the co-ordintes. This means that
the converse of theorem 1.7 is not valid in general.

Example 2.7. Consider the non co-ordinated convex function:

f(r, s, t) := 2r2 − s2 + t2, r, t, s ∈ [1, 2].

It is easy to see that for the function G was defined in (2.4) we have G(x, x) = 0, for every
x ∈ [1, 2], and

G(x, y) =
1

(y − x)3

∫ y

x

∫ y

x

∫ y

x

(
2r2 − s2 + t2

)
drdsdt− (x+ y)2

2

=
2

3
(x2 + y2 + xy)− (x+ y)2

2
,

for every x, y ∈ [1, 2], with x 6= y . Thus,

G(x, y) =
2

3
(x2 + y2 + xy)− (x+ y)2

2
.

Clearly G is symmetric, continuous and differentiable on [1, 2]× [1, 2]. If x, y ∈ [1, 2], we have

(y − x)

(
∂G

∂y
− ∂G

∂x

)
=

2

3
(y − x)2 ≥ 0.

Therefore by Theorem 1.4 the function G is Schur-convex.
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