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1. Introduction

The first study of Schur-convexity was done by Issai Schur in 1923. Since then numerous
articles have been written about it, see for exmple [3, 4, 9, 10]. Schur-convexity has many
important applications in analytic and geometric inequality, combinatorial analysis, combi-
natorial optimization, matrix theory, information theory, and other fields . We recall some
definitions as follows:

Definition 1.1. [I] Suppose that x = (1, z2,...,2n), ¥y = (Y1,%2,...,Yn) € R™. z is said to
be majorized by y (in symbols z < y) if

k k
Zx[l] < Zym k= 1,2,...,n— 1,
i=1 =1
and . .
ch[i] - Zy[i]v
i=1 i=1

where x[;), denotes the i-th largest component in .

Definition 1.2. [I] Let E C R", f : E — R is said to be Schur-convex function on E if z < y
on E implies f(x) < f(y). f is said to be Schur-concave if and only if —f is Schur-convex.

Definition 1.3. [1, 8] (i) A set E C R™ is called symmetric, if z € E implies Pz € E for
every n X n permutation matrix P.

(73) A function f : E — R is is said to be a symmetric function if f(Pz) = f(z) for every
permutation matrix P, and for every xz € E.

Recall that a n x n square matrix P is said to be a permutation matrix if each row and
column has a single unite entry, and all other entries are zero. The following theorem called the
schur’s condition, is very useful for specifying Schur-convexity or Schur-concavity of functions.
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16 N. SAFAEI AND A. BARANI

Theorem 1.4. [1| Let E C R™ be a symmetric convex set with nonempty interior ( E° is the
interior of E), and f : E — R is a symmetric continuous function on E. If f is differentiable
on E°, then f is Schur-convexr (Schur-concave) on E° if and only if

of _of
- - = <0
w-a) (5t~ 75) 20 (<o)
for every x = (z1,x9,...,2,) € E°.
In [5], S.S. Dragomir defined convex function on the co-ordinates (or co-ordinated convex

functions ) on the set [a,b] x [c,d] in R? with a < b and ¢ < d as follows:

Definition 1.5. A function f : [a,b] X [¢,d] — R is said to be convex on the co-ordinates on
[a,b] X [c,d] if for every y € [c,d] and x € [a, b], the partial mappings,

fyrla, bl = R, fy(u) = flu,y),
and
fei[e,d] = R, fr(v) = f(z,v),
are convex. This means that for every (x,¥), (z,w) € [a,b] X [¢,d] and t, s € [0, 1],
fr+ (1 —1t)z,sy+ (1 —s)w) < tsf(z,y) +s(1—1)f(2,y)
+t(1 = s)f(z,w) + (1 =t)(1 = 5)f(z,w).
Clearly, every convex function is co-ordinated convex. Furthermore, there exist co-ordinated

convex functions which are not convex. The following Hermite-Hadamard type inequality for
co-ordinated convex functions was also proved in [5].

Theorem 1.6. Suppose that f : [a,b] X [c,d] — R is convez on the co-ordinates on [a, b] X [c,d].

Then,
) < [t [
S_l_c/b/df(m,y)dydm
[ _a/fxcdx+/fxd
/faydy+/fbydy}

< f(a c)+f(a d) + f(b,c) + f(b, d
- 4
The above inequalities are sharp.

| /\

In [7], M.E. Ozdemir defined convex function on a rectangular box Q = [a, b] x [¢, d] X [e, f]
in R? as follows: A function f: Q — R is said to be convex on the co-ordinates on € if for
every (z,y) € [a,b] X [¢,d], (z,2) € [a,b] x[e, f] and (y, 2) € [c,d] X [e, f], the partial mappings,

fz:]a,b] X [e,d] > R,  f.(u,v) = f(u,v,2), zE€le,/f],
fyila,b] x[e, fl =R,  fylu,w)=f(u,y,w), ye€lecd,
feile,d) x e, f] = R,  fi(lv,w) = f(z,v,w), € [a,b],

are convex. The following theorem is given in [7].
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Theorem 1.7. Suppose that f : Q = [a,b] X [c,d] X [e, f] = R is convex on the co-ordinates

on ). Then one has the inequalities:
ol
f(x,y, z)dydzdx
@) | Jo "

f<a+bc+de+f><
[(b—al—c / | fw,y, e)dyda

2 ’ 2 ’ 2

(

1
(b—a(f/ N f Z,C, Z)dZdl'
1
+(b—a(f/ AQfﬂ?dZ)dZdl‘
1
)
1

(/Qkfa%)ww

where Ay = [a,b] X [¢,d], Ay = [a,b] X [e, f] and Ag = [c, d] x e, f].

In [6] Elezovi¢ and Pecari¢ investigated the Schur-convexity on the upper and the lower
limit of the integral for the mean of convex function and proved the following important result
by using the Hermite-Hadamard inequality.

Theorem 1.8. Let f be a continuous function on an interval I, and
1y
F(x,y): ﬁfx f(t)dt’ $7y617 :L‘#ya
f((l?), r=yel

Then F(x,y) is Schur-convex (Schur-concave) on I? if and only if f is convex (concave) on
I.

Let I C R be an open interval and f € C?(I). In [3] Y. Chu et al. proved the following
theorem.

Theorem 1.9. Let f: I — R be a continuous function. The function
0, r=yel,
is Schur-conver (Schur-concave) on I? if and only if f is convex (concave) on I.

We recall the following lemma from [2], which is known as Leibniz’s Formula.

Lemma 1.10. Suppose that f : A = [a,b] X [¢,d] = R and %{ : [a,b] x [e,d] — R are contin-
uous and oy, s : [¢,d] — [a,b] are differentiable functions. Then, the function ¢ : [c,d] — R
defined by

OzQ(t)
O
Oél(t)
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has a derivative for each t € [c,d], which is given by

as(t) 8f

(0 = 1), 004(t) = Fe @), 0040 + [ 7wy

Moreover, we use the following lemma which will be useful in the sequal. A version of the
following lemma proved in [9].

Lemma 1.11. Let F(u,v) = [ [ [V f(z,y, z)dzdydz, where

f(z,y,2), ab/fwy,

ab/ / f(2,y, 2)dady

are continuous on the cube Q = [a,p| X [a,p] X [a,p] , u(b) and v = v(b) are differentiable
with a < u(b) < p and a < v(b) < p. Then,

%—}; = </uv /uv f(x,y,v)d:vdy—i—/uv /uv f(z,v, z)dzdz
(1.1) + /: /uv f(v,y,z)dydz)v’(b) — </uv /: f(x,y,u)dzdy
+:Avxjf@;mzﬁhdz+:Ay[ff@%ywﬁdyh>u%®.

Proof. If G(u,v,y,2) = fuv f(z,y,z)dx and H(u,v,z) = f: G(u,v,y,z)dy then F(u,v) =
[V H(u, v, z)dz. Therefore by Lemma 1.10, we have

and

(1.2) aalz = H(u,v,v)v(b) — H(u,v,u)u (b) + /uv aH(g’b”’Z)dz,
(1.3) Mﬂ&u@:m%%%@MM_Gw%%@w@
+/u” 3G(u,81g, Y, Z)dy,
(1.4 IEDYZ) _ o, 200/ (6) — (w2 ).
By replacing (1.3) and (1.4) in (1.2) we obtained required result in (1.1). O

2. Main Results

In this section we prove new theorems like those Theorem 1.8 and Theorem 1.9 for co-
ordinated convex functions.
To reach our main results, we need the following two lemmas.

Lemma 2.1. Let Q = [a1,b1] X [a1,b1] X [a1,b1] be a cube in R® with a; < by, and the
function f : Q — R is continuous, and has continuous second order partial derivatives on Q°(
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the interior of Q ). Choose a,b € (a1, b1), with a < b, and let D := [a, b] X [a,b]. Suppose that
the function F': D — R is defined by

L (Y (Y [Y £(r, s, t)drdsdt, . z,y € [a,b],
H%w:{wﬂﬁgggfws>rs v#y, 2y €lol)

f(:c,x,m), r =1y, x,yE[a,b].
Then,
oF|  _oF
0x (to,to) _8y (to,to)
of
6 Bt (t,t,t) |4 +2 (gl(t()atO)tO) + g2(to, o, to) + g3(to, to, to)
(2.1) + fi(to, to, to) + f2(to, to. to) + f3(to, to, to))] 7
for all ty € [a,b] ,where
0
filu,v,tg +t) = %(u,v,to + 1),
0
f2(u7t0 + ta w) = a*{(uﬂfo + ta W),
0
fa(to+t,v,w) = a{ (to +t,v,w),
and
of

gl(uat0+t,t0+t): (u7t0+tat0+t)a

at

0
ga2(to +t,v,t0 +1) = 8{(t0+t v,to + 1),
of
g3(to +t,to +t,w) = 8t(t0+tt0+tw)
Proof. Fix ty € [a,b]. We put
hi(u,v,tg +t) = %‘?(u, v, to + 1),
df2
ha(u,ty +t,w) = T —=(u,tg + t,w),
dfs
st + £,0,) = (10 + 1,0,w)
By using the L’Hopital’s rule, and Lemmas 1.10, 1.11 we see that
oF — lim F(to +1t, to)—F(thto)

oz (to,to)  t—0

to+t t0+t to+t
=lim — [/ / / (u, v, w)dudvdw — t f(to,to)]
=0 t4

to+t t0+t to+t  plo+t
_%1—>04t3[/t0 / flu,v,tg+t dudv—i—/to /0 f(u,to +t, w)dudw

to+t  pto+t
+ / / f(to +t, v, w)dvdw — 3t f(to, to, to)]
to
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1 to+t to+t
= 1' _—
t1—r>r(1) 122 |:/t0 fu,to+t,to —‘rt)du—i-/to f(to+t,v,to + t)dv
tott rlott gy to+t
+ / / —(u,v,to + t)dudv + / flu,to+t,to+t)du
to to 8t to
to+t to+t  ptot+t af
+/ f(to+t,to+t, w)dw+/ / ——(u, to + t, w)dudw
to to to at
to+t to+t
+ / flto+t,v,t0 +t)dv + / flto+t,to +t,w)dw
to to
to+t  ptot+t af
+ / / - (to +t, v, w)dvdw — 6t f(to, to, o)
to to 8t
1 Lt of
=lim — 2 —
tgr(l) YT |:6f(t0 +t,to+tto+1t)+ /t‘o D (u,to +t,to + t)du
to+t g to+t g
+2/ f(to+t,v,t0+t)dv+2/ l(to—i—t,to—l—t,lu)dlu
. ot . ot
(2.2) 0 0
to+t to+t
—|—/ f1(u,t0+t,to+t)du+/ fi(to+t,v,tg +t)dv
to to
to+t  plot+t to+t
+ / / hi(u, v, to + t)dudv + / falu,to +t, to + t)du
to to to
to+t to+t  pto+t
+ / falto +t,to +t,w)dw + / / ho(u, to + t, w)dudw
to to to
to+t to+t
+ / fa(to +t,v,to + t)dv + / fa(to +t,to +t,w)dw
to to
to+t plo+t
+ / / h3(t0 +tv, ’LU)d’wa - Gf(t0> to, tO):|
to to
1[ . 0f
=51 Ga(t,tﬂf) |t +2(91(t0,t07t0) + g2(to, to, to) + g3(to, to, to)
+ f1(to, to, o) + fa(to, o, to) + f3(to; to, to)} :
By changing the role of z by y in (2.2), we obtain required results in (2.1). O

The proof of the following lemma is similar to once in lemma 2.1 hence we omit it.

Lemma 2.2. Let ) := [a1, b1] % [a1,b1] X [a1, b1] be a cube in R® with a1 < by, and the function
Q2 — R is continuous, and has continuous four order partial derivatives on °. Choose
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a,b € (a1, b1), with a < b, and let D := [a,b] X [a,b]. Suppose that the function G : D — R is
defined by

(y—la:)3fxy fﬁ ff fr, s, t)drdsdt

G(z,y) == — (55, 2y 2oy x £y, x,y € [a,b],
0, x=vy, x,y € |a,bl.
Then,
06| _oa
ox l(tote) Oy I(tosto)
1 af
=51l 3@(&@0 lto +2 (gl(to,to,to) + ga(to, to, to) + g3(to, to, to)

+ f1(to, to, to) + f2(to, o, to) + fs(to,to,toﬂ ,

for all ty € [a,b], where

0
fl(uvvat() +t) = i(uvv7t0 +t)7

ot
0
f?(u7t0+t7w) = ?{(tho—i_taw)?
0
fa(to +t,v,w) = a—‘:(tg +t,v,w),

and

0
gl(u, to + ¢, to +t) = l(u,to + 1,1t —|—t),

ot
of

go(to +t,v,to+1t) = a(to +tu,tg+ 1),
of

gg(to + 1,10 —I—t,w) = a(to + 1,10+ t,w).

We now derive the next results for co-ordinates convex functions.

Theorem 2.3. Let D := [a1,b1] x [a1,b1] % [a1,b1] be a cube in R® with a; < by, and the
function f : D — R is continuous, and has continuous second order partial derivatives on
D°. Choose a,b € (a1,b1), with a < b, and let A := [a,b] X [a,b] X [a,b]. Suppose that f is
convex on the co-ordinates on A, then the function F' : [a,b] X [a,b] — R defined by

1 Y ry ry
(23) F(.’E,y) = (y—x)3 fa: fm fm f(T', Sat)d'l”det, xT 75 Y, T,Y€ [a, b]’
flz,z,x), z=vy, x,y€labl.

is Schur-convex on [a,b] X [a,b].

Proof. Case 1: If 2,y € [a,b], with = y. Then Lemma 2.1 implies that
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Case 2: If z,y € [a,b], with  # y. Then by Lemma 1.11 we have

?91; :(1/:?;6)4 /: /: /: f(r, s, t)drdsdt
tool [ s

+/:/:f(r,y,t)drdtJr/ry/:f(y,s,t)dsdt}a

and
% :@_396)4 /xy /:/:f(r,s,t)drdsdt
_M[/:cy/gcyf(r,s,x)drds
+/: /:f(r,x,t)drdt—i—/:/:f(x,s,t)dsdt].
Thus,

(?;_(ZID :(y:(;)zl/:/:/:f(r,&t)drdsdt
" (y—lx)3[/: /: (f(r,s,2) + f(r,s,y))drds

+/y/y (f(r,z,t) + f(r,y,t))drdt
+/y/y (f(x,s,t)—i—f(y,s,t))dsdt )

Then (y — x) (%—I; — %—I;) is nonnegative if

yix/:/xy/xyf(r,s,t)drdsdt

= H/: /: (f(r,s,2) + f(r,s,y))drds
* /:j /: (f(r,@.t) + f(r,y.t))drdt
+/j/j (f(z,5,t) + f(y,5,1))dsdt]|.

Since f is convex on the co-ordinates the last inequality holds by Theorem 1.7. Therefore by
Theorem 1.4 the function F' is Schur-convex. g

The following theorem also holds:

Theorem 2.4. Let D := [a1,b1] X [a1,b1] X [a1,b1] be a cube in R® with a; < by, and the
function f : D — R is continuous, and has continuous four order partial derivatives on D°.
Choose a,b € (a1,b1), with a < b, and let A := [a,b] X [a,b] X [a,b]. Suppose that f is convex
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on the co-ordinates on A, then the function G : [a,b] x [a,b] — R defined by

(y—lsc)3 f;”l ff ff f(r, s, t)drdsdt
C4 Gl = e ), 4y myelad,
0’ =Y, ﬂU,yG[a,b].

is Schur-convex on [a,b] X [a,b].

Proof. Case 1: If x,y € [a,b], with = y. Then Lemma 2.2 implies that

Case 2: If z,y € [a,b], with  # y. Then by Lemma 1.11 we have

oG 0G
— =) >

if
1 Yooy
/ / / f(r,s,t)drdsdt
Y=2Jg Jz Jz
17 v v
S 6|:/ / (f(TaSﬁU)—l-f(T,S,y))drds
-
+/ / (f(r,z,t) + f(r,y,t))drdt
T T
vy
+/ / (f(:c,s,t) +f(y,s,t))dsdt .
The result follows from Theorem 1.7 and Theorem 1.4. 0

In the following examples we show that the converses of theorems 2.3 and 2.4 are not true
in general.

Example 2.5. Consider the non co-ordinates convex function,
1
f(r,s,t) =r%— 552 +t%, rtsell,?2].
It is easy to see that for the function F' was defined in (2.3) we have F(z,z) = 322, for every
x € [1,2], and

F(z,y) ! /y/y/y(2 L2 1 2)drdsdt = L(2? + 42 + 2y)
r,Y) = ———= rt——s rdsdt = —(x° + y* + zy),
(y - x)?, z Jr Jx 2 2
for every x,y € [1,2], with « # y. Thus,
1
F(z,y) = 5(3:2 + 32 + zy),
for every z,y € [1,2]. Clearly F' is symmetric, continuous and differentiable on [1,2] x [1,2].
If x,y € [1,2], we have
OF OF 1
e (2 20) 1o

oy Ox
Therefore by Theorem 1.4 F' is Schur-convex.
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Remark 2.6. It is easy to see that for the function f was defined in example 2.5 each of the
inequalities in theorem 1.7 is valid while f is not convex on the co-ordintes. This means that
the converse of theorem 1.7 is not valid in general.

Example 2.7. Consider the non co-ordinated convex function:
frys,t):=2r2 — s>+, rt,sc(l,2).

It is easy to see that for the function G was defined in (2.4) we have G(x,z) = 0, for every

x € [1,2], and
1 vory v (z+y)?
__ 9p2 _ 2 4 42 _\zTry)”
G(z,y) (y—a:)?’/z /I /x (2r° — s* + t*)drdsdt 5

(z +y)*

2
=>(2* +y* +ay) — 5

3
for every x,y € [1,2], with  # y . Thus,

2 x + )2
G(z,y) = g(xz +y° +ay) — (2y)

Clearly G is symmetric, continuous and differentiable on [1,2] x [1,2]. If z,y € [1,2], we have

w-a) (G -5 ) = 3P 20

Therefore by Theorem 1.4 the function G is Schur-convex.
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