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Abstract. We collected some results about maps on the algebra of all bounded operators
that preserve the local spectrum and local spectral radius at nonzero vectors. Also, we de-
scribe maps that preserve operators of local spectral radius zero at points and discuss several
problems in this direction. Finally, we collect maps that preserve the local spectral subspace
of operators associated with any singleton.
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1. Introduction and Background
Linear preserver problems, in the most general setting, demands the characterization of

maps between algebras that leave a certain property, a particular relation, or even a subset
invariant. In all cases that have been studied by now, the maps are either supposed to be
linear, or proved to be so. This subject is very old and goes back well over a century to the
so-called first linear preserver problem, due to Frobenius [25], who characterized linear maps
that preserve the determinant of matrices. The aforesaid Frobenius’ work was generalized
by J. Dieudonné [21], who characterized linear maps preserving singular matrices. The goal
is to describe the general form of linear maps between two Banach algebras that preserve a
certain property, or a certain class of elements, or a certain relation. One of the most famous
problems in this direction is Kaplansky’s problem [32] asking whether every surjective unital
invertibility preserving linear map between two semisimple Banach algebras is a Jordan ho-
momorphism. His question was motivated by two classical results, the result of Marcus and
Moyls [34] on linear maps preserving eigenvalues of matrices and the Gleason-Kahane-Zelazko
theorem [26, 31] stating that that Every unital invertibility preserving linear functional on
a unital complex Banach algebra is necessarily multiplicative. This result was obtained in-
dependently by Gleason in [26] and Kahane-Zelazko in [31], and was refined by Zelazko in
[37]. In the non-commutative case, the best known results so far are due to Aupetit [2] and
Sourour [36]. They showed that the answer to the Kaplansky question is in the affirmative for
von Neumann algebras [2] and for bijective unital linear invertibility preserving maps acting
on the algebra of all bounded operators on a Banach space [36]. Linear and nonlinear pre-
server problems cleared the way for several authors to describe maps on matrices or operators
that preserve invertibility, spectrum, spectral radius and spectrally bounded; see for instance
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[28, 29, 35] and the references therein.

2. preservers of local spectra
Throughout this paper, X and Y denote infinite-dimensional complex Banach spaces, and

B(X,Y ) denotes the space of all bounded linear maps from X into Y . As usual, when
X = Y , we simply write B(X) for B(X,X). Also, let Mn(C) be the algebra of all n × n
complex matrices. The local resolvent set, ρT (x), of an operator T ∈ B(X) at some point
x ∈ X is the set of all λ ∈ C for which there exists an open neighborhood U of λ in C
and a X-valued analytic function f : U −→ X such that (µI − T )f(µ) = x for all µ ∈ U .
The complement of local resolvent set is called the local spectrum of T at x, denoted by
σT (x). The local resolvent set, ρT (x), of an operator T ∈ B(X) at some point x ∈ X is the
set of all λ ∈ C for which there exists an open neighborhood U of λ in C and a X-valued
analytic function f : U −→ X such that (µI − T )f(µ) = x for all µ ∈ U . The complement
of local resolvent set is called the local spectrum of T at x, denoted by σT (x). The local
spectral radius of T at x is given by rT (x) := lim supn−→∞ ∥Tn(x)∥

1
n , and coincides with the

maximum modulus of σT (x) provided that T has the single-valued extension property. Recall
that an operator T ∈ B(X) is said to have the single-valued extension property (henceforth
abbreviated to SVEP) if, for every open subset U of C, there exists no nonzero analytic
solution, f : U −→ X, of the equation

(µI − T )f(µ) = 0, ∀ µ ∈ U.

Every operator T ∈ B(X) for which the interior of its point spectrum, σp(T ), is empty enjoys
this property. For every subset F ⊆ C the local spectral subspace XT (F ) is defined by

XT (F ) = {x ∈ X : σT (x) ⊆ F}.

Clearly, if F1 ⊆ F2 then XT (F1) ⊆ XT (F2). The remarkable books by Aiena [1] and by
Laursen and Neumann [33] provide an excellent exposition as well as a rich bibliography of
the local spectral theory.

In this paper, we survey some results about preservers of local spectra on the algebra of all
bounded operators.

The first lemma summarizes some basic properties of the local spectrum.

Lemma 2.1. [1], [33] Let X be a Banach space and T ∈ B(X). For every x, y ∈ X and a
scalar α ∈ C the following statements hold.

(i) If T has SVEP, then σT (x) ̸= ∅ provided that x ̸= 0.
(ii) σT (αx) = σT (x) if α ̸= 0, and σαT (x) = ασT (x).
(iii) If Tx = λx for some λ ∈ C, then σT (x) ⊆ {λ}. Further, if x ≠ 0 and T has SVEP,

then σT (x) = {λ}.
(v) If S ∈ B(X) commutes with T , then σT (Sx) ⊆ σT (x).
(iv) σTn(x) = {σT (x)}n for all x ∈ X and n ∈ N.

Let A = B(X) (resp. A = Mn(C)) and x ∈ X (resp. x ∈ Cn) be a fixed nonzero vector. A
map φ : A → A is said to preserve
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(1) the local spectrum at x if
σφ(T )(x) = σT (x) (T ∈ B(X).

(2) the local spectral radius at x if
rφ(T )(x) = rT (x) (T ∈ B(X).

The study of linear and nonlinear local spectra preserver problems attracted the attention of
a number of authors. The problem of characterizing additive maps on B(X) preserving local
spectrum was initiated by Bourhim and Ransford in [15]. They showed that the only additive
map φ from B(X) into itself for which

σφ(T )(x) = σT (x), (T ∈ B(X), x ∈ X),

is the identity.

Theorem 2.2. [15] Let φ : B(X) → B(X) be an additive map such that

σφ(T )(x) = σT (x), (T ∈ B(X), x ∈ X).

Then φ(T ) = T for all T ∈ B(X).

Note that in the above theorem, unlike many results in this general area, the map φ do
not require to be surjective, or even linear, just additivity suffices.

Gonzalez and Mbekhta [27] characterized linear maps on Mn(C) that preserving the local
spectrum at only a fixed nonzero vector x0 ∈ Cn. They proved that a linear map φ preserves
the local spectrum at x0 if and only if there exists an invertible matrix A in Mn(C) such that
Ax0 = x0 and φ(T ) = ATA−1 for all T ∈ Mn(C).

Theorem 2.3. [27] Let φ : Mn(C) → Mn(C) be a linear map and x0 ∈ Cn be a fixed nonzero
vector. Then φ preserves the local spectrum at x0 if and only if there exists an invertible
A ∈ Mn(C) such that Ax0 = x0 and φ(T ) = ATA−1 for every T ∈ Mn(C).

In the case when the vector x0 is not fixed, Costara is given the following theorem.

Theorem 2.4. [18] Let φ : Mn(C) → Mn(C) be a linear map. Then the following statement
are equivalent;
(i) For each T ∈ Mn(C) there exists a nonzero vector xT ∈ Cn such that

σφ(T )(xT ) = σT (xT ).

(ii) For each T ∈ Mn(C) there exists a nonzero vector xT ∈ Cn such that
σφ(T )(xT ) ∩ σT (xT ) ̸= ∅.

(iii) There exists an invertible matrix A ∈ Mn(C) such that either
φ(T ) = ATA−1, (T ∈ Mn(C)),

or
φ(T ) = AT tA−1, (T ∈ Mn(C)),

where T t is the transpose of T .

Bourhim and Miller [14] described linear maps on Mn(C) preserving the local spectral
radius at a fixed nonzero vector in Cn.
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Theorem 2.5. [14] Let x0 be a nonzero fixed vector of Cn. A linear map φ from Mn(C) into
itself preserves the local spectral radius at x0 ∈ Cn, i.e.,

rT (x0) = rφ(T )(x0), (T ∈ Mn(C)),
if and only if there exist a scalar α of modulus 1 and an invertible matrix A ∈ Mn(C) such
that Ax0 = x0 and φ(T ) = αATA−1 for all T ∈ Mn(C).

The corresponding result for the case when x0 is not fixed is given by Costara in the next
theorem.
Theorem 2.6. [18] Let φ be a linear map from Mn(C) into itself. Then for each T ∈ Mn(C)
there exists a nonzero vector xT ∈ Cn such that rφ(T )(xT ) = rT (xT ) if and only if there exist
an invertible matrix A ∈ Mn(C) and an unimodular α such that either

φ(T ) = αATA−1, (T ∈ Mn(C)),
or

φ(T ) = αAT tA−1, (T ∈ Mn(C)),
where T t is the transpose of T .

Bracic and Muller [16] extended the both Theorem 2.3 and Theorem 2.5 to infinite di-
mensional Banach space by characterizing surjective continuous linear maps φ on B(X) that
preserve the local spectrum and the local spectral radius at a fixed nonzero vector in X.
Theorem 2.7. [16] Let x0 ∈ X be a fixed nonzero vector and let φ : B(X) → B(X) be a
surjective continuous linear mapping. Then σφ(T )(x0) = σT (x0) for all T ∈ B(X) if and only
if there exists an invertible operator A ∈ B(X) such that Ax0 = x0 and φ(T ) = ATA−1 for
all T ∈ B(X).

Theorem 2.8. [16] Let x0 ∈ X be a fixed nonzero vector. Let φ : B(X) → B(X) be a
surjective continuous linear mapping. Then rφ(T )(x0) = rT (x0) for all T ∈ B(X) if and only
if there exist an invertible operator A ∈ B(X) and c ∈ C of modulus 1 such that Ax0 = x0
and φ(T ) = cATA−1 for all T ∈ B(X).

Bracic and Muller [16] also asked whether their results remain true without continuity
assumption on φ.

problem.[16] Is it possible to omit the assumption of continuity of φ in Theorem 2.7 and
Theorem 2.8?

Costara [20] gave an affirmative answer to this problem, in the case when φ preserves the
local spectral radius at a fixed nonzero vector. He showed that a linear mapping on B(X) that
decreases the local spectral radius at a fixed nonzero vector in X is automatically continuous.

Bendaoud [6] characterized surjective maps φ on Mn(C) which satisfy
σφ(T )+φ(S)(x0) ⊆ σT+S(x0) for a fixed nonzero vector x0 in Cn and all matrices T and S.
He arrived at the same conclusion by supposing that σT+S(x0) ⊆ σφ(T )+φ(S)(x0) for a fixed
nonzero vector x0 in Cn and all matrices T and S, without the surjectivity assumption on φ.
Theorem 2.9. [6] Let x0 be a fixed nonzero vector in Cn. A map φ from Mn(C) into itself
satisfies

σT+S(x0) ⊆ σφ(T )+φ(S)(x0), (T, S ∈ Mn(C)),
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if and only if there exists an invertible matrix A ∈ Mn(C) such that Ax0 = x0 and φ(T ) =
ATA−1 for all T ∈ Mn(C).

The following result shows that the same conclusion holds when the reverse set inclusion
in

σT+S(x0) ⊆ σφ(T )+φ(S)(x0), (T, S ∈ Mn(C)),

occurs but at the price of the additional assumption that φ is surjective.

Theorem 2.10. [6] Let x0 be a fixed nonzero vector in Cn. A surjective map φ from Mn(C)
into itself satisfies

σφ(T )+φ(S)(x0) ⊆ σT+S(x0), (T, S ∈ Mn(C))

if and only if there exists an invertible matrix A ∈ Mn(C) such that Ax0 = x0 and φ(T ) =
ATA−1 for all T ∈ Mn(C).

However, Bendaoud characterized continuous maps from Mn(C) onto itself that preserve
the local spectral radius of the sum of matrices.

Theorem 2.11. [6] Let x0 be a fixed nonzero vector in Cn. A continuous map φ from Mn(C)
onto itself satisfies

rφ(T )+φ(S)(x0) = rT+S(x0), (T, S ∈ Mn(C))

if and only if there exist a scalar c of modulus one and an invertible matrix A ∈ Mn(C) such
that Ax0 = x0 and φ(T ) = cATA−1 for all T ∈ Mn(C), or Ax0 = x0 and φ(T ) = cATA−1

for all T ∈ Mn(C). Here T (resp. x) denotes the matrix (resp. the vector) obtained from T
(resp. x) by entrywise complex conjugation.

Bendaoud et al. [7] in the following theorem characterized nonlinear maps on Mn(C) that
preserve the local spectrum of the product of matrices at a fixed nonzero vector.

Theorem 2.12. [7] Let x0 be a fixed nonzero vector in Cn. A map φ from Mn(C) into itself
satisfies

σφ(T )φ(S)(x0) = σTS(x0), (T, S ∈ Mn(C)) (2.1)

if and only if there exist a scalar ε = ±1 and an invertible matrix A ∈ Mn(C) such that
Ax0 = x0, and φ(T ) = εATA−1 for all T ∈ Mn(C).

The following theorem shows that unlike the finite dimensional case when φ satisfies (2.1)
at a fixed nonzero vector x0, the only map φ on B(X) which satisfies the equality (2.1) at all
vectors x ∈ X is the identity or the negative of the identity.

Theorem 2.13. [7] A map φ from B(X) into itself satisfies

σφ(T )φ(S)(x) = σTS(x), (T, S ∈ B(X), x ∈ X)

if and only if there exists a scalar ε = ±1 such that φ(T ) = εT for all T ∈ B(X).

In the case of two Banach spaces X,Y are different, Bourhim and Mashreghi [12] char-
acterized surjective maps on B(X) that preserve the local spectrum of product operators at
fixed nonzero vector.
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Theorem 2.14. [12] Let x0 ∈ X and y0 ∈ Y be two nonzero vectors. A map φ from B(X)
onto B(Y ) satisfies

σφ(T )φ(S)(y0) = σTS(x0), (T, S ∈ B(X)),

if and only if there exists a bijective bounded linear operator A ∈ B(X,Y ) such that Ax0 = y0
and either φ(T ) = ATA−1 for all T ∈ B(X) or φ(T ) = −ATA−1 for all T ∈ B(X).

Bendaoud [5] in the following theorem characterized nonlinear maps on Mn(C) that preserve
the local spectrum of triple product matrices at a fixed nonzero vector.

Theorem 2.15. [5] Let x0 be a fixed nonzero vector in Cn. A map φ from Mn(C) into itself
satisfies

σφ(T )φ(S)φ(T )(x0) = σTST (x0), (T, S ∈ Mn(C))

if and only if there are a third root of unity ε and an invertible matrix A ∈ Mn(C) such that
Ax0 = x0, and φ(T ) = εATA−1 for all T ∈ Mn(C).

Bourhim and Mashreghi [13] characterized surjective maps on the algebra of all bounded
linear operators on a complex Banach space that preserve the local spectrum of triple product
operators at fixed nonzero vector.

Theorem 2.16. [13] Let x0 ∈ X and y0 ∈ Y be two nonzero vectors. A map φ from B(X)
onto B(Y ) satisfies

σφ(T )φ(S)φ(T )(y0) = σTST (x0), (T, S ∈ B(X)),

if and only if there exists a bijective bounded linear mapping A from X into Y such that
Ax0 = y0 and either φ(T ) = ATA−1 for all T ∈ B(X) or φ(T ) = −ATA−1 for all T ∈ B(X).

Bourhim and Mabrouk [9] described the form of all maps preserving the local spectrum of
Jordan product of operators on a complex Banach space.

Theorem 2.17. [9] Let x0 ∈ X \ {0} and y0 ∈ Y \ {0}. A map φ from B(X) onto B(Y )
satisfies

σφ(T )φ(S)+φ(S)φ(T )(y0) = σTS+ST (x0) (T, S ∈ B(X))

if and only if there exists a bijective mapping A ∈ B(X,Y ) such that Ax0 = y0 and either
φ(T ) = ATA−1 for all T ∈ B(X) or φ(T ) = −ATA−1 for all T ∈ B(X).

Note that if X and Y are isomorphic Banach spaces, then the statements of the above
result can be reduced to the case when X = Y and x0 = y0. Bourhim and Mabrouk [10]
showed that Theorem 2.17 remains valid without the surjectivity condition on φ but when
X = Y = Cn.

Theorem 2.18. [10] Let x0 be a nonzero fixed vector of Cn. A linear map φ from Mn(C)
into itself satisfies

σφ(T )φ(S)+φ(S)φ(T )(x0) = σTS+ST (x0) (T, S ∈ Mn(C))

if and only if there exists an invertible matrix A ∈ Mn(C) such that Ax0 = x0 and φ(T ) =
±ATA−1 for all T ∈ Mn(C).
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3. maps preserving operators of local spectral radius zero
In [17], C. Costara described surjective linear maps on B(X) which preserve operators of

local spectral radius zero at points of X. He showed that if φ : B(X) → B(X) is a linear and
surjective map such that for every x ∈ X and T ∈ B(X)

rT (x) = 0 ⇔ rφ(T )(x) = 0,

then there exists a nonzero scalar c ∈ C such that φ(T ) = cT for all T ∈ B(X).

Theorem 3.1. [17] Let φ : B(X) → B(X) be linear and surjective map such that for every
x ∈ X and T ∈ B(X),

rφ(T )(x) = 0 ⇔ rT (x) = 0,

then there exists a nonzero complex number c ∈ C such that φ(T ) = cT for all T ∈ B(X).

In the case of two different Banach spaces X and Y , it was proved by Bourhim and
Ransford at [15, Theorem 1.5] that if B is a bounded linear operator from Y into X and
φ : B(X) → B(Y ) is linear and surjective such that σφ(T )(y) = σT (By) for all T ∈ B(X)

and for all y ∈ Y , then B is invertible and φ(T ) = B−1TB for all T ∈ B(X). The following
theorem is the corresponding result in the case of maps preserving operators of local spectral
radius zero.

Theorem 3.2. [17] Let X and Y be complex Banach spaces and φ : B(X) → B(Y ) linear
and bijective for which there exists B ∈ B(Y,X) such that for every y ∈ Y

rT (By) = 0 ⇔ rφ(T )(y) = 0.

Then B is invertible and there exists a nonzero complex number c such that φ(T ) = cB−1TB
for all T ∈ B(X).

This result has been extended by Bourhim and Mashreghi in [11] where it is shown that if
φ is a surjective (not necessarily linear) map on B(X) that satisfies

rT−S(x) = 0 ⇔ rφ(T )−φ(S)(x) = 0

for every x ∈ X and T ∈ B(X), then there are a nonzero scalar c ∈ C and an operator
A ∈ B(X) such that φ(T ) = cT +A for all T ∈ B(X).

Theorem 3.3. [11] Let φ be a surjective map on B(X) which satisfies

rT−S(x) = 0 ⇔ rφ(T )−φ(S)(x) = 0, (x ∈ X, T ∈ B(X)),

then there are a nonzero scalar c ∈ C and an operator A ∈ B(X) such that φ(T ) = cT + A
for all T ∈ B(X).

Elhodaibi and Jaatit [24] established a similar result to the one given by [11, Theorem 4.1].
The only difference is that the map φ is not assumed surjective.

Theorem 3.4. [24] Let φ : B(X) → B(X) be a map. Then the following assertions are
equivalent.
(i) rφ(T )−φ(S)(x) = 0 if and only if rT−S(x) = 0 for all x ∈ X and T ∈ B(X).
(ii) There exists a nonzero scalar µ ∈ C such that φ(T ) = µT + φ(0) for all T ∈ B(X).



56 R. PARVINIANZADEH AND J. PAZHMAN

Bourhim and Costara [8] considered the more general problem of describing linear maps φ
on Mn(C) preserving operators of local spectral radius zero at a nonzero fixed vector x0 ∈ Cn.
Their aim was to characterize linear maps φ on Mn(C) such that

rT (x0) = 0 ⇔ rφ(T )(x0) = 0, (T ∈ Mn(C)).

Since this problem is trivial for the case when n = 1, they supposed that n ≥ 2. For the
special case when n = 2, they obtained the following result.

Theorem 3.5. [8] Let x0 be a nonzero fixed vector of C2. A linear map φ on M2(C) into
itself satisfies

rT (x0) = 0 ⇔ rφ(T )(x0) = 0, (T ∈ M2(C)),
if and only if there exists a nonzero scalar α, an invertible matrix U ∈ M2(C) for which
Ux0 = x0, and a matrix Q ∈ M2(C) satisfying Qx0 = x0 and tr(Q) ̸= −1 such that φ(T ) =
α(UTU−1 + tr(T )Q) for all T ∈ M2(C).

In [14], Bourhim and Miller showed that a linear map φ on Mn(C) preserves the local
spectral radius at a nonzero vector x0 ∈ Cn if and only if φ is an automorphism (up to a
multiple factor of modulus one) and x0 is an eigenvector of the intertwining matrix; see also
[19] for nonlinear local spectral radius preservers. For the special case when n = 2, the above
theorem shows that there are nontrivial linear maps on M2(C) that do not preserve the local
spectral radius at x0, even after a re-scaling that preserves matrices of local spectral radius
zero at x0. However, Bourhim and Costara [8] in the next theorem showed that if n is an
integer greater than 2 and φ is a linear map on Mn(C) satisfying

rT (x0) = 0 ⇔ rφ(T )(x0) = 0, (T ∈ Mn(C)),

then φ is, up to a nonzero multiple factor, a local spectral radius preserver at x0.

Theorem 3.6. [8] Let n ≥ 3 be a natural number and fix a nonzero vector x0 ∈ Cn. A linear
map φ : Mn(C) → Mn(C) satisfies

rT (x0) = 0 ⇔ rφ(T )(x0) = 0, (T ∈ Mn(C)),

if and only if there exists a nonzero scalar α and an invertible matrix U ∈ Mn(C) such that
Ux0 = x0 and φ(T ) = αUTU−1 for all T ∈ Mn(C).

Bourhim and Costara in [8] maked some remarks and comments on linear and nonlinear
preservers of local spectral radius and discussed some further challenging problems, which are
suggested by the main results of paper [8].

In the sequel, let x0 ∈ X and y0 ∈ Y be two nonzero vectors.

problem 1. [8] Which maps φ from B(X) onto B(Y ) satisfy
rT (x0) = 0 ⇔ rφ(T )(y0) = 0, (T ∈ B(X))?

When X and Y are infinite-dimensional Banach spaces, Bourhim and Costara conjectured
that a linear map φ from B(X) onto B(Y ) satisfies

rT (x0) = 0 ⇔ rφ(T )(y0) = 0, (T ∈ B(X))
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if and only if there are a nonzero scalar α ∈ C and a bijective bounded linear mapping A
from X into Y such that Ax0 = y0 and φ(T ) = αATA−1 for all T ∈ B(X). Note that the
injectivity of any linear map φ satisfying

rT (x0) = 0 ⇔ rφ(T )(y0) = 0, (T ∈ B(X))

follows from [11, Theorem 3.1]. But, unlike for the infinite-dimensional case, the surjectivity
assumption of such a map φ is necessary.

As far as for the nonlinear local spectral radius preservers, we first state the following
problem.

problem 2. [8] Which maps φ from B(X) onto B(Y ) satisfy
rT±S(x0) = 0 ⇔ rφ(T )±φ(S)(y0) = 0, (S, T ∈ B(X)) (3.1)?

Obviously, (3.1) holds for any map φ from B(X) onto B(Y ) satisfying
rT±S(x0) = rφ(T )±φ(S)(x0), (S, T ∈ B(X)) (3.2).

In the finite-dimensional case, the description of such maps is known as shown by Costara
in [19]. He proved that a surjective map φ on Mn(C) satisfies (3.2) with φ(0) = 0 if and only
if φ is an automorphism multiplied by a scalar of modulus one and the intertwining matrix
sends x0 to y0. However, when X and Y are infinite-dimensional spaces, the characterization
of maps satisfying (3.2) is unknown and remains an open problem as well.

In [12], Bourhim and Mashreghi showed that a map φ from B(X) onto B(Y ) satisfies
σTS(x0) = σφ(T )φ(S)(y0) (S, T ∈ B(X)),

if and only if there exists a bijective bounded linear mapping A from X into Y such that
Ax0 = y0 and either φ(T ) = ATA−1 for all T ∈ B(X) or φ(T ) = −ATA−1 for all T ∈ B(X).
Naturally, this result suggests the problem of describing all maps φ from B(X) onto B(Y )
for which

rTS(x0) = rφ(T )φ(S)(y0), (S, T ∈ B(X)).

Even more, one may ask the following more general question of describing all maps on B(X)
preserving the product of operators of local spectral radius zero at some fixed nonzero vector
of X.

problem 3. [8] Which maps φ from B(X) onto B(Y ) satisfy
rTS(x0) = 0 ⇔ rφ(T )φ(S)(y0) = 0, (S, T ∈ B(X))?

Similar questions can be asked when replacing the usual product by triple or Jordan prod-
uct.

problem 4. [8] Describe all maps φ from B(X) onto B(Y ) satisfying either
rSTS(x0) = 0 ⇔ rφ(S)φ(T )φ(S)(y0) = 0, (S, T ∈ B(X))

or
rTS+TS(x0) = 0 ⇔ rφ(T )φ(S)+φ(S)φ(T )(y0) = 0, (S, T ∈ B(X))
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4. local spectral subspace preserver
Motivated by the result from the theory of linear preservers proved by Jafarian and

Sourour [30], Dolinar et al. [22], characterised the form of maps preserving the lattice
of sum of operators, they showed that maps (not necessarily linear) φ : B(X) → B(X)
satisfy Lat(φ(A) + φ(B)) = Lat(A + B) for all A,B ∈ B(X), if and only if there are
a non zero scalar α and a map ϕ : B(X) → F such that φ(A) = αA + ϕ(A)I for all
A ∈ B(X), where F is the complex field C or the real field R and Lat(A) is denoted the
lattice of A, that is, the set of all invariant subspaces of A. They proved also, that a
not necessarily linear maps φ : B(X) → B(X) satisfies Lat(φ(A)φ(B)) = Lat(AB) (resp.
Lat(φ(A)φ(B)φ(A)) = Lat(ABA), resp. Lat(φ(A)φ(B) + φ(B)φ(A)) = Lat(AB +BA)) for
all A,B ∈ B(X), if and only if there is a map ϕ : B(X) → F such that φ(A) ̸= 0 if A ̸= 0
and φ(A) = ϕ(A)A for all A ∈ B(X). Recall that XT (Ω), the local spectral subspace of
T associated with a subset Ω of C, is an element of Lat(T ), so one can replace the lattice
preserving property by the local spectral subspace preserving property.

To the nonlinear maps preserving the local spectral subspace, Elhodaibi and Jaatit [23]
showed that the only additive map which preserving the local spectral subspace associated
with any singletons is the identity.

Theorem 4.1. [23] Let φ : B(X) −→ B(X) be an additive map such that
Xφ(T )({λ}) = XT ({λ}), (T ∈ B(X), λ ∈ C).

Then φ(T ) = T for all T ∈ B(X).

In [4], Benbouziane et al. characterized the form of surjective weakly continuous maps φ
from B(X) into B(X) which satisfy

Xφ(T )−φ(S)({λ}) = XT−S({λ}), ∀ T, S ∈ B(X), (T, S ∈ B(X), λ ∈ C).

Theorem 4.2. [3] Let X be a complex Banach space. Suppose φ : B(X) −→ B(X) is a
surjective weakly continuous map which satisfies the following condition,

Xφ(T )−φ(S)({λ}) = XT−S({λ}), (T, S ∈ B(X), λ ∈ C).

Then there is a nonzero scalar c ∈ C such that φ(T ) = cT + φ(0) for all T ∈ B(X).

As a continuation in this direction, Benbouziane et al. In [3], determined the forms of all
maps preserving the local spectral subspace of sum, product and triple product of operators
associated with non-fixed singletons.

Theorem 4.3. [3] A surjective map φ : B(X) −→ B(X) satisfies
Xφ(T )+φ(S)({λ}) = XT+S({λ}), (T, S ∈ B(X), λ ∈ C)

if and only if φ(T ) = T for all T ∈ B(X).

Furthermore, they investigated the product case as well as the triple product case.

Theorem 4.4. [3] A surjective map φ : B(X) −→ B(X) satisfies
Xφ(T )φ(S)({λ}) = XTS({λ}), (T, S ∈ B(X), λ ∈ C),

if and only if φ(T ) = ϵT for all T ∈ B(X), where ϵ = ±1.
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We end this paper with the following theorem in which Benbouziane et al. character-
ized maps on B(X) preserving the local spectral subspace of the triple product of operator
associated with a singleton.
Theorem 4.5. [3] A surjective map φ from B(X) into itself satisfies

Xφ(T )φ(S)φ(T )({λ}) = XTST ({λ}), (T, S ∈ B(X), λ ∈ C)

if and only if there exists a scalar α ∈ C such that α3 = 1 and φ(T ) = αT for all T ∈ B(X).
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