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Abstract. In this paper, we study Kropina spaces whose geodesics are the orbits of one-
parameter subgroup of the group of isometries. Also, we study Kropina g.o. metrics on ho-
mogeneous spaces with two isotropy summands and we will investigate Kropina g.o. metrics
on compact homogeneous spaces with two isotropy summands. A complete characterization
of navigation data of non-Riemannian Kropina g.o. metrics is given.

MSC(2010): 22E60, 53C30, 53C60.
Keywords: g.o. space, homogeneous space, Kropina metric, navigation data.

1. Introduction
The theory of Finsler spaces developed from the calculus of variations as well as Riemannian

geometry. To obtain Finsler spaces instead of Riemann spaces we must replace the require-
ment that the space be locally Euclidean by the requirement that it be locally Minkowskian.
Since a Euclidean metric is also Minkowskian, a Riemann space is also a Finsler space. In
1972, Matsumoto [20] introduced the concept of (α, β)-metrics which are the generalization
of Randers metric introduced by Randers [23]. The (α, β)-metrics form an important class of
Finsler metrics appearing iteratively in formulating Physics, Mechanics, Seismology, Biology,
Control Theory, etc [2]. Recently, many studies have been conducted in the field of (α, β)-
metrics (for more details see [1, 8, 18, 19, 27]).

An (α, β)-metric is a Finsler metric of the form F = αφ(s), s = β
α where α =

√
ãij(x)yiyj

is induced by a Riemannian metric ã = ãijdx
i ⊗ dxj on a connected smooth n-dimensional

manifold M and β = bi(x)y
i is a 1-form on M . The important types of (α, β)-metrics happen

when φ(s) = 1
s . In this case we have

(1.1) F =
α2

β
,

which called Kropina metric, which was considered by Kropina firstly (see [15]).
Such a metric is of physical interest in the sense that it describes the general dynamical sys-
tem represented by a Lagrangian function [3], although it has the singularity.

In 1931, the following problem studied by Zermelo [7]:
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”Suppose a ship sails the sea and a wind comes up. How must the captain steer the ship
in order to reach a given destination in the shortest time?”

Zermelo solved this problem for the Euclidean flat plane. The problem was solved by Bao,
Robles and Shen for the Riemannian manifold (M,h) under the assumption h(W,W ) < 1
where W is the wind [5]. If W is a time-independent wind, they found the path minimizing
are exactly the geodesics of Randers metric

F (x, y) = α(x, y) + β(x, y) =

√
λ.|y|2 +W 2

0

λ
− W0

λ
,

where W =W i ∂
∂xi is the wind velocity, |y|2 = h(y, y), λ = 1− |W |2 and W0 = h(W,y).

The Randers metric F is said to solve the Zermelo’s navigation problem in the case
h(W,W ) < 1. The condition h(W,W ) < 1 ensures that F is a positive-definite Finsler metric.

By normalizing, we can consider an open sea represented by a Riemannian manifold (M,h)
and a wind W = W i ∂

∂xi such that h(W,W ) = 1. Indeed, another description of Kropina
metrics is the definition of these metrics as the solutions of the navigation problem on some
Riemannian manifold (M,h) under the influence of a vector field W with

∥W∥h = h(W,W ) = 1.

In this case the pair (h,W ) is called the navigation data of F . In fact F = α2

β is Kropina
metric on manifold M if and only if

F =
h2

2W0
,

where h2 = e2ρα2, 2W0 = e2ρβ, e2ρb2 = 4 and b = ∥β∥h for some functions ρ = ρ(x) on M .

The Chern connection defines the covariant derivative DV U of a vector field U ∈ χ(M) in
the direction V ∈ TpM . Let σ : [0, r] →M be a smooth curve with velocity field T = T (t) =
σ̇(t). Suppose that U and W are vector fields defined along σ. We define DTU with reference
vector W as

DTU =

[
dU i

dt
+ U jT k(Γi

jk)(σ,W )

]
∂

∂xi
|σ(t).

A curve σ : [0, r] →M , with velocity T = σ̇ is a Finslerian geodesic if

DT

[
T

F (T )

]
= 0,

with reference vector T .

There are some important subclasses of geodesic orbit manifolds. Indeed, g.o. spaces may
be considered as a natural generalization of Riemannian symmetric spaces. On the other
hand, the class of g.o. spaces is much larger than the class of symmetric spaces. A Riemann-
ian manifold (M, g) is called a geodesic orbit manifold (g.o. manifold) if every its geodesic is an
orbit of a one-parameter group of isometries of (M, g). Every such manifold is homogeneous
and can be identified with a coset space M = G/H of a transitive Lie group G of isometries.
A Riemannian homogeneous space (M = G/H, g) of a Lie group G is called a space with
homogeneous geodesics (or a geodesic orbit space, shortly, g.o. space), if any its geodesic is
an orbit of a one-parameter subgroup of the group G. This terminology was introduced by
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O. Kowalski and L. Vanhecke in the [14].

We noted that, any homogeneous space M = G/H of a compact Lie group G admits a Rie-
mannian metric g such that (M, g) is a g.o. space. It suffices to take the metric g induced by a
bi-invariant Riemannian metric g0 on the Lie group G such that (G, g0) → (M = G/H, g) is a
Riemannian submersion with totally geodesic fibres. Such geodesic orbit space (M = G/H, g)
is called a normal homogeneous space. It should be noted also that any naturally reductive
Riemannian manifold is geodesic orbit. Recall that a Riemannian manifold (M, g) is natu-
rally reductive if it admits a transitive Lie group G of isometries with a bi-invariant pseudo-
Riemannian metric g0, which induces the metric g on M = G/H.

A geodesic δ : R → M on a Riemannian manifold (M,Q) is called homogeneous if there
is a one-parameter group of isometries ω : R×M →M such that

δ (t) = ω
(
t, δ (0)

)
, t ∈ R.

The notion of a homogeneous geodesic plays a fundamental role in the theory of homo-
geneous Riemannian manifold, especially in the study of g.o. spaces. g.o. spaces in fact are
a Riemannian manifold whose geodesics are all homogeneous. Any naturally reductive Rie-
mannian manifold is a g.o. space.

Since the full group of isometries of a Finsler space is a Lie group [10], we can define a
Finsler g.o. space in exactly the same way as in the Riemannian case, namely, a Finsler g.o.
space is a space such that every geodesic is the orbit of a one-parameter group of isometries.

A homogeneous Kropina space can be written as a coset space G/H with a G-invariant
Kropina metric F = α2

β , where both the Riemannian metric α and the form β are invariant
under the action of G. In particular, the Lie algebra of G, has a decomposition

g = h+m,

such that Ad (h) (m) ⊂ m, h ∈ H. Identifying m with the tangent space To(G/H) at the
origin o, we get an H-invariant inner product on m.

2. Preliminaries
Let M be a smooth n- dimensional C∞ manifold and TM be its tangent bundle. A Finsler

metric on a manifold M is a non-negative function F : TM → R with the following properties
[4]:

(1) F is smooth on the slit tangent bundle TM0 := TM\{0}.
(2) F (x, λy) = λF (x, y) for any x ∈M , y ∈ TxM and λ > 0.
(3) The following bilinear symmetric form gy : TxM × TxM → R is positive definite

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0.

Definition 2.1. Let α =
√
ãij (x) yiyj be a norm induced by a Riemannian metric ã and

β (x, y) = bi(x)y
i be a 1-form on an n-dimensional manifold M . Let

b := ∥β(x)∥α :=
√
ãij(x)bi(x)bj(x).
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Now, let the function F is defined as follows

(2.1) F := αφ(s), s =
β

α
,

where φ = φ(s) is a positive C∞ function on (−b0, b0) satisfying
φ (s)− sφ′ (s) +

(
b2 − s2

)
φ′′ (s) > 0, |s| ≤ b < b0.

Then F is a Finsler metric if ∥β(x)∥α < b0 for any x ∈M . A Finsler metric in the form (2.1)
is called an (α, β)-metric.

A Finsler space having the Finsler function:

F (x, y) =
α2(x, y)

β(x, y)
,

is called a Kropina space.
The Riemannian metric ã induces an inner product on any cotangent space T ∗

xM such that
⟨dxi(x), dxj(x)⟩ = ãij(x).

The induced inner product on T ∗
xM induced a linear isomorphism between T ∗

xM and TxM .
Then the 1-form β corresponds to a vector field X̃ on M such that

ã
(
y, X̃ (x)

)
= β (x, y) .

Also, we have
∥β(x)∥α = ∥X̃(x)∥α.

Therefore we can write (α, β)-metrics as follows:

(2.2) F (x, y) = α (x, y)φ

(
ã(X̃ (x) , y)

α(x, y)

)
,

where for any x ∈M , √
ã
(
X̃ (x) , X̃ (x)

)
= ∥X̃(x)∥α < b0.

Let (M,F ) be a Finsler space, where F is positively homogeneous. As in the Riemannian
case, we have two types of definition of isometry on (M,F ), in terms of Finsler function in
the tangent space and the induced non-reversible distance function on the base manifold M .
The equivalence of these two definitions in the Finsler case is a result of Deng and Hou [10].
They also prove that the group of isometries of a Finsler space is a Lie transformation group
of the underlying manifold which can be used to study homogeneous Finsler spaces.

Definition 2.2. [17] A Finsler space (M,F ) is called a homogeneous Finsler space if the
group of isometries of (M,F ), I(M,F ), acts transitively on M .

Now we have the following definition:

Definition 2.3. Let (M,F ) be a Finsler space and G = I(M,F ) the full group of isometries.
The space (M,F ) is called a Finsler geodesic orbit space if every geodesic of (M,F ) is the orbit
of a one-parameter subgroup of G. That is, if γ is a geodesic, then there exist W ∈ g = Lie(G)
and o ∈M , such that

γ (t) = exp (tW ).o.
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Definition 2.4. Let (G/H,F ) be a homogeneous Finsler space, and p = eH ∈ G/H. A
vector X ∈ g− {0} is called a geodesic vector if the curve exp (tX).p is a geodesic.

For a geodesic vector we have the following geodesic Lemma from the second author:

Lemma 2.5. [17] A vector X ∈ g− {0} is a geodesic vector if and only if
gXm

(
Xm, [X,Z]m

)
= 0, ∀Z ∈ m,

where the subscript m means the corresponding projection, and g is the fundamental tensor
of F on m.

The following result is obvious:

Proposition 2.6. Let (G/H,F ) be a homogeneous Finsler space. Then every geodesic in
G/H is an orbit of a one-parameter subgroup of G if and only if for every X ∈ m−{0}, there
exists a vector ζ (X) ∈ h, such that X + ζ (X) is a geodesic vector.

Now for a isometries of Kropina space we have the following:

Proposition 2.7. [13] Suppose that (M,F ) is a Kropina space which arises from a navigation
data (h,W ). Then the isometry group of (M,F ) is a closed subgroup of the isometry group
of Riemannian manifold (M,h).

3. Kropina geodesic orbit spaces
In this section we study some results for Kropina geodesic orbit spaces. Notice that we

restrict our consideration to the domain where β = bi (x) y
i > 0, which is equivalent to

W0 =Wi (x) y
i > 0.

Let h =
√
hij (x) yiyj be a Riemannian metric and W =W i ∂

∂xi a vector field on M . A Finsler
metric F is of Kropina type if and only if it solves the navigation problem on some Riemann-
ian manifold (M,h), under the influence of a wind W with ∥W∥h = 1. Namely, F = α2

β

if and only if F = h2

2W0
, where h2 = e2ρα2, 2W0 = e2ρβ, e2ρb2 = 4 and b = ∥β∥h, for some

functions ρ = ρ(x) on M . We call such a pair (h,W ) the navigation data of Kropina metric F .

Now, suppose that (M = G/H, g) be a compact homogeneous Riemannian manifold with
G-compact and semi-simple. Denote by g and h the Lie algebras of the compact Lie groups
G and H, respectively. Let B be the minus Killing form of g. Then g admits a B-orthogonal
reductive decomposition:

g = h⊕m,

where m is isomorphic to the tangent space of M at o = eH via X → d
dt |t=0exptX.o. Any

G-invariant metric g on M is in a one-to-one correspondence to an Ad(H)-invariant inner
product ⟨, ⟩ on m. Moreover, any Ad(H)-invariant inner product is in a one-to-one correspon-
dence to an endomorphism A : m → m by ⟨X,Y ⟩ = B(AX,Y ), ∀X,Y ∈ m, which is called
the metric endomorphism. Obviously, A is Ad(H)-equivariant (hence ad(H)-equivariant),
symmetric with respect to B and positively definite.

We note that, a (local) flow on a manifold M is map ϕ : (−ϵ, ϵ) ×M → M , also denoted
by ϕt := ϕ(t, .), satisfying

(1) ϕ0 = id :M →M ,
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(2) ϕs.ϕt = ϕs+t, for any s, t ∈ (−ϵ, ϵ) with s+ t ∈ (−ϵ, ϵ).

Proposition 3.1. Suppose (M,F = α2

β ) be a Kropina space with navigation data (h,W ). Let
ã be the Riemannian metric of α. Now define a vector field β̃ by

ã
(
β̃, Y

)
= β(Y ),

where Y is an arbitrary vector field on M . Then a vector field X on M is a Killing field of
(M,F ) if and only if X is a Killing vector field of (M,h) and [X,W ] = 0.

Proof. Since X is a Killing field of (M,F ), then its flow ϕt is an isometry on (M,F ), i.e.
ϕ∗tF = F for each t, where ϕ∗t is the flow on TM defined by ϕ∗t (x, y) :=

(
ϕt(x), ϕt∗(y)

)
. Now

according to Proposition (2.7), this is equivalent to ϕ∗th = h and ϕ∗tW =W . This proofs the
assertion. □

Now we have the following Theorem for geodesic vector:

Theorem 3.2. Suppose (G/H,F = α2

β ) be a homogeneous Kropina space with navigation
data (h,W ). Then an element X ∈ g, g = Lie(G), is a geodesic vector if and only if

(3.1) h(Xm, Xm)h(Xm, [Xm, Z]m) + F (Xm)h([Xm, Z]m, w) = 0.

holds for any Z ∈ m, w =W |o ∈ m.

Proof. Let g = h+m be the reductive decomposition, and w =W |o ∈ m. Then for any y ∈ m
the Minkowski norm on m induced by F can be expressed as

F (y) =
h2(y, y)

2h(y, w)
,

where h is the inner product on m induced by Riemannian metric. Let g be the fundamental
tensor of F . Then for any x, y ∈ m, we have

gx (x, y) =
1

2

∂2

∂s∂t
F 2
(
x+ sx+ ty

)
|s=t=0

=
1

2

∂2

∂s∂t

(
A (s, t)

B (s, t)

)
|s=t=0,

where
A (s, t) = h4

(
x+ sx+ ty, x+ sx+ ty

)
,

B (s, t) = 4h2
(
x+ sx+ ty, w

)
.

A direct computation shows that
∂A

∂s
(0, 0) = 8h4 (x, x) = 8A (0, 0) ,

∂A

∂t
(0, 0) = 8h3 (x, x)h (x, y)

and
∂2A

∂s∂t
(0, 0) = 0.
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On the other hand we have
∂B

∂s
(0, 0) = 8h2 (x,w) = 2B (0, 0) ,

∂B

∂t
(0, 0) = 8h (x,w)h (y, w) ,

and
∂2B

∂s∂t
(0, 0) = 0.

Thus, we have

gx (x, y) = −1

2

[
∂ A
∂ t (0, 0)

∂ B
∂ s (0, 0) + ∂ A

∂ s (0, 0) ∂ B
∂ t (0, 0)

B2 (0, 0)

]

+

[
A (0, 0) ∂ B

∂ t (0, 0) ∂ B
∂ s (0, 0)

B3 (0, 0)

]

=
−2h3(x, x)h(x, y)h(x,w)− 2h4(x, x)h(y, w)

h3(x,w)
+
h4(x, x)h(y, w)

h3(x,w)

=
h2(x, x)

[
− 4h(x, x)h(x, y)h(x,w)− 2h2(x, x)h(y, w)

]
2h3(x,w)

=
−4F (x)

h(x,w)

[
h(x, x)h(x, y) + F (x)h(y, w)

]
.

Now from the definition of geodesic vectors we have
−4F (Xm)

h(Xm, w)

[
h(Xm, Xm)h(Xm, [Xm, Z]m) + F (Xm)h([Xm, Z]m, w)

]
= 0, ∀Z ∈ m,

and then
h(Xm, Xm)h(Xm, [Xm, Z]m) + F (Xm)h([Xm, Z]m, w) = 0, ∀Z ∈ m.

□
Now we have:

Theorem 3.3. Suppose (M = G/H,F ) be a homogeneous Kropina space with navigation
data (h,W ). If (G/H, h) is a Riemannian g.o. manifold and W is a Killing vector field of
(G/H, h), then (M,F ) is a Kropina g.o. space.

Proof. Suppose W is a Killing vector of (G/H, h) and ψt be it’s flow. Let G′ be the group
generated by ψt and G, and W0 ∈ g′ = Lie(G′) be the element corresponding to ψt. We
know that W0 lies in the center of g′. Now according to Theorem 4.2 of [21], every unit speed
geodesic δ : (−ϵ, ϵ) → G/H of F through p = eH has the form

δ(t) = exp(tW0).κ(t),

where κ(t) is the unit speed geodesic of (G/H, h). Now since every geodesic of (G/H, h) is
an orbit of a one-parameter subgroup of G, there exists Z ∈ g such that κ(t) = exp(tZ).p.
Then we have

δ(t) = exp(tW0).κ(t) = exp(tW0)exp(tZ).p = expt(W0 + Z).p.

This implies that (M,F ) is a geodesic orbit space. □
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Now we have the next Proposition that proved in [11]:

Proposition 3.4. [11] Suppose G is a connected Lie group and H is a closed subgroup such
that G/H is a reductive homogeneous space with a reductive decomposition g = h+m. Let h
be a G-invariant Riemannian metric on G/H and suppose z ∈ m is an H-fixed vector. Then
the corresponding invariant vector field Z on G/H is a Killing vector field with respect to h
if and only if z satisfies

h([z, z1]m, z2) + h(z1, [z, z2]m) = 0, ∀z1, z2 ∈ m.

Theorem 3.5. Suppose (M = G/H,F ) be a homogeneous Kropina space with navigation
data (h,Z). Let (G/H, h) is a Riemannian g.o. manifold and Z̃ is the vector field on G/H

generated by an Ad(H)-invariant vector Z ∈ m such that ∥Z̃∥h = 1 and Z satisfies
h([Z,Z1]m, Z2) + h(Z1, [Z,Z2]m) = 0, ∀Z1, Z2 ∈ m.

Then (M,F ) is a Kropina g.o. space.

Proof. According to Proposition (3.4), Z̃ is a Killing vector field on G/H and then by Theorem
(3.3) (M,F ) is a Kropina g.o. space. □

We recall that, a geodesic γ(t) on G/H through the origin o = eH is called G-homogeneous
if it is an orbit of a one-parameter subgroup of G, i.e.,

γ(t) = exp(tX).o, t ∈ R;

whereX is a non-zero vector in g and we callX a geodesic vector. A Riemannian homogeneous
space (M = G/H, g) is called a G-geodesic orbit space (or G− g.o. space) if all geodesics on
G/H are G-homogeneous. In this case, the metric g is called G-geodesic orbit. If G is the
full isometry group, then (M = G/H, g) is called a geodesic orbit manifold (or g.o. manifold).
A homogeneous Riemannian manifold (G/H, g) is called naturally reductive if there is an
Ad(H)- invariant decomposition g = h+m such that for all X,Y, Z ∈ m,

⟨[X,Y ]m, Z]⟩+ ⟨Y, [X,Z]m⟩ = 0,

or, equivalently, for all X,Y ∈ m,
⟨[X,Y ]m, X⟩ = 0.

We note that, the Kropina metric on M = G/H arising from a Riemannian g.o. metric
h and an invariant Killing vector field W is geodesic orbit with respect to G′. In the above
discussion, we assume G to be semisimple, which means G is a proper subgroup of G′. It is
well-known that an extension of the isometry group may affect the naturally reductivity of
the given metric (see Theorem (3.3) and it’s proof).

It is well-known that naturally reductivity is equivalent to the geometrical property that for
each vector X ∈ m, the orbit γ(t) = exp(tX).o is a geodesic. Therefore, naturally reductive
Riemannian homogeneous spaces are geodesic orbit spaces, which can be also deduced from
the algebraic equivalent conditions [8].

In [8], authors proved the following lemma.

Lemma 3.6. [8] Let (M = G/H, h) be a G − g.o. space. Then all G-invariant vector fields
on M are Killing vector fields.
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Now from this property we have the following Theorem based on the results in Theorem
(3.3).

Theorem 3.7. Let (G/H,F ) be a homogeneous Kropina space with navigation data (h,W ).
If (G/H, h) is a Riemannian G− g.o. space, then (M,F ) is a Kropina g.o. space.

The next Theorem give us condition for a Kropina metric to be Berwaldian:

Theorem 3.8. Let (M = G/H,F ) be a homogeneous Kropina space with navigation data
(h,W ). Then the Kropina metric F is of Berwald type if and only if ad(w)m, where w =
W |o ∈ m, is skew-symmetric with respect to h and h(w, [m,m]m) = 0.

Proof. Since F is Berwald metric, Then W is parallel with respect to h ( see Theorem 3.3 in
[25] ). Now by the similar arguments in [16], we obtain the desired result. □

From the proof of Theorem (3.3), the Kropina metric on M arising from a Riemannian
g.o. metric h and an invariant Killing vector field W is geodesic orbit with respect to G′.
we assumed that G to be semisimple, which means G is a proper subgroup of G′. It is well-
known that an extension of the isometry group may affect the naturally reductivity of the
given metric. So we can discuss the naturally reductivity of Kropina metrics F with respect
to G′. Denote by H ′ the isotropy subgroup in G′ at the origin point o = eH ∈M , then M is
diffeomorphic to G′/H ′ with an Ad(H ′)-invariant decomposition g′ = h′+̃m′, where g′ and h′

are the Lie algebras of G′, H ′ respectively, and m′ is isomorphic to the tangent space of M
at o. In [8], authors shown that the decomposition g′ = h′+̃m is Ad(H ′)-invariant. Now we
have the next Theorem like the Randers case in [8].

Theorem 3.9. Let there is a closed intermediate subgroup K̃ of G such that H ⊂ K̃ ⊂ G
and G/K̃ is a symmetric space of compact semisimple type with a B-orthogonal reductive
decomposition

g = k̃⊕ m̃,

and the trivial Ad(H)-submodule n is contained in k̃. Then any invariant non-Riemannian
Kropina metric F with navigation data (h,W ) is non-Berwaldian, hence non-naturally reduc-
tive.

4. Kropina g.o. metrics on homogeneous spaces with two isotropy summands
In this section, we assume that G/H is a compact and simply connected homogeneous

space with G simple and the isotropy representation is the direct sum of two irreducible rep-
resentations. We will give characterization of navigation data of non-Riemannian Kropina
g.o. metrics.

The classification of the compact homogeneous spaces with two isotropy summands was
done for the first time by W. Dickinson and M.M. Kerr in [12]. After them, compact sim-
ply connected geodesic orbit Riemannian spaces (G/H, g) with two isotropy summands were
Classified by Z. Chen and Yu. Nikonorov in [9].

Let m be the tangent space of M = G/H at o = eH, which is the B- orthogonal complement
to h in g with a reductive decomposition g = h⊕m. Then we have the following decomposition:

m = m1 ⊕m2,
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where m1,m2 are irreducible Ad(H)-submodules in m and B(m1,m2) = 0.

We have the following Proposition and Theorem that proved in [9].

Proposition 4.1. [9] Suppose a compact homogeneous space G/H with connected compact
H has two irreducible components in the isotropy representation. Then one of the following
possibilities holds:

(1) g = f⊕ f⊕ f and h = diag(f) ⊂ g for a compact simple Lie algebra f;
(2) g = g1 ⊕ g2 and h = h1 ⊕ h2, where hi ⊂ gi and the pair (gi, hi) is isotropy irreducible

with simple compact Lie algebras gi for i = 1, 2;
(3) g = f ⊕ f ⊕ g1 for simple compact Lie algebras g1 and f, h = diag(f) ⊕ h1, where

h1 ⊂ g1 and the pair (g1, h1) is isotropy irreducible;
(4) g = l ⊕ k, where l is a simple compact Lie algebra, k is either a simple compact Lie

algebra or R, and there exist a Lie algebra k1 such that k⊕ k1 is a subalgebra in l such
that the pair (l, k⊕ k1) is isotropy irreducible, whereas h = diag(k)⊕ k1 ⊂ l⊕ k;

(5) g = R2, h = 0, G/H = S1 × S1;
(6) g = R⊕ g1, where g1 is a semi-simple compact Lie algebra, h ⊂ g1 and the pair (g1, h)

is isotropy irreducible for i = 1, 2;
(7) g is a simple compact Lie algebra.

Theorem 4.2. [9] Assume that G/H is a compact and simply connected homogeneous space
with non-simple G and the isotropy representation is the direct sum of two irreducible rep-
resentations (it corresponds to cases (1)–(6) in Proposition (4.1). Then G/H, supplied with
any G invariant Riemannian metric, is naturally reductive, hence, geodesic orbit.

In fact, those spaces G/H in cases (2), (3), (5), and (6) of Proposition (4.1) are normal
homogeneous. It is known also that G/H in case (4) are naturally reductive. Note that for a
simply connected compact homogeneous space G/H the group H is connected, but the cases
(5) and (6) are impossible. Case (1) of Proposition (4.1) is more complicated that proved in [9].

Among compact simply connected spaces G/H with G simple and with two isotropy sum-
mands, only Spin(8)/G2 has two equivalent irreducible submodules [12]. Except for this case,
any G-invariant Riemannian metric on G=H must be in the following form:

(4.1) ⟨, ⟩ = x1B|m1 + x2B|m1 , x1, x2 ∈ R+.

The authors in [9], shown that if for x1 ̸= x2, G/H can admit a g.o. metric, then there
exists a subgroup K of G such that H ⊂ K ⊂ G and G/K is symmetric. Also, all G-invariant
Riemannian metrics on these homogeneous spaces G/H are G-geodesic orbit. On the other
hand, a G-invariant metric g on G/H is G naturally reductive if and only if x1 = x2 in the
metric defined in equation (4.1). In the table (1), We list all homogeneous spaces G/H in
Theorem 2 in [9] along with the isotropy representation of H. In the following table, λi is
the fundamental representation corresponding to the simple root system, id is trivial repre-
sentation. [π]R is a real irreducible representation which is the sum of a complex irreducible
representation and its dual π ⊕ π∗. When h has a u(1)-factor, we use ϕ to denote the fun-
damental (one complex dimensional) representation. We note that, the spaces of cases (1),
(3)-(9) are weakly symmetric, whereas the space of case (2) is not.
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Table 1. Compact homogeneous spaces with two isotropy summands

No. H ⊂ K ⊂ G χ1 χ2 Remark
(1) G2 ⊂ Spin(7) ⊂ Spin(8) λ1 λ1 -
(2) SO(2) × G2 ⊂ SO(2) × SO(7) ⊂ SO(9) id ⊗ λ1 λ1 ⊗ λ1 -
(3) U(n) ⊂ SO(2n) ⊂ SO(2n + 1) [λ2 ⊗ ϕ]R [λ1]R n ⩾ 2
(4) SU(2n + 1) ⊂ U(2n + 2) ⊂ SO(4n + 2) id [λ2]R n ⩾ 2
(5) Spin(7) ⊂ SO(8) ⊂ SO(9) λ1 λ3 -
(6) SU(m) × SU(n) ⊂ S(U(m)U(n)) ⊂ SU(m + n) id [λ1 × λn−1]R m > n ⩾ 1
(7) Sp(n)U(1) ⊂ Sp(U(2n)U(1)) ⊂ SU(2n + 1) [λ2 ⊗ id]R [λ2 ⊗ ϕ]R n ⩾ 2

(8) Sp(n)U(1) ⊂ Sp(n)Sp(1) ⊂ Sp(n + 1) id ⊗ [ϕ2]R λ1 ⊗ [ϕ]R n ⩾ 1
(9) Spin(10) ⊂ Spin(10)SO(2) ⊂ E6 id [λ4]R -

Now by table (1), in cases (4), (6) and (9), for the trivial Ad(H)- submodules we have
n1 = m1 and n2 = {0}.

Now by Theorem (3.7), a Kropina metric on G/H with navigation data (h,W ) is a non-
Riemannian Kropina G′ − g.o. metric if and only if h is a Riemannian G− g.o. metric on M
and W is induced by any non-zero z ∈ m1 satisfying ∥z∥h = 1. Since G/K is a compact sym-
metric space and the trivial Ad(H)-submodule m = n is contained in k, by Theorem (3.9), the
above G′-invariant Kropina metrics with navigation data (h,W ) are non-naturally reductive.

When all Kropina g.o. metrics are Riemannian, by Theorem (3.7), we have no trivial
Ad(H)- submodule contained in m1 or m2 for the spaces of cases (1)-(3), (5), (7) and (8).
Thus we have the next Theorem:

Theorem 4.3. Let M = G/H is a simply connected compact homogeneous space with two
isotropy summands and let (M = G/H,F ) is a Kropina space with navigation data (h,W ).
Then M can admit non-Riemannian and non-naturally reductive Kropina geodesic orbit met-
rics with respect to G′ if and only if M is one of the following cases:

(1) SO(4n+ 2)/SU(2n+ 1), n ⩾ 2;
(2) SU(m+ n)/SU(m)× SU(n), m > n ⩾ 1;
(3) E6/Spin(10).
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