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Abstract. The ease with which digital images can be manipulated with readily available
editing tools highlights the critical need for robust copyright protection mechanisms. Digi-
tal watermarking tackles this challenge by embedding imperceptible ownership information
within images. However, striking a balance between transparency (invisibility of the water-
mark) and robustness against attacks remains a significant hurdle. This paper proposes a
watermarking method that uses the combined strengths of Finite Ridgelet Transform (FRIT)
and Bidiagonal Singular Value Decomposition (BSVD). Our approach first pre-processes the
image using FRIT to extract prominent features. Subsequently, the watermark is impercep-
tibly embedded into the singular values obtained from the FRIT coefficients. Our evaluation
using standard sample images confirms high visual quality and robustness to attacks for the
proposed method.
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1. Introduction and Background
Digital watermarking has emerged as a prominent technique for safeguarding ownership

and copyright protection of multimedia content. The core principle lies in embedding a
subtle and imperceptible mark, such as a logo or signature, within the host image. This mark
serves as a unique identifier, establishing ownership and facilitating content authentication.
However, achieving a balance between robustness (resistance to attacks) and imperceptibility
(invisibility to the human eye) presents a significant challenge [5].

Watermarking techniques can be broadly classified into two categories: blind and non-blind.
Blind watermarking allows for watermark retrieval without the original unwatermarked im-
age, while non-blind methods necessitate it. Furthermore, these techniques can be categorized
based on the domain of watermark embedding: spatial or frequency [10, 14]. Spatial domain
methods embed the watermark directly into the pixel values of the image. While computation-
ally efficient, they are often susceptible to attacks that alter the image content. Conversely,
frequency domain methods embed the watermark into the transformed frequency coefficients
of the image, typically obtained using Discrete Fourier Transform (DFT) [11], Discrete Cosine
Transform (DCT)[9] or Discrete Wavelet Transform (DWT)[1]. These methods offer enhanced
robustness due to the inherent characteristics of the frequency domain.

Date: Received: May 5, 2023 , Accepted: December 26, 2023.
81



82 F. SALARI

Among various frequency transforms, DWT has gained significant traction in watermark-
ing due to its alignment with the human visual system (HVS). This alignment allows for
watermark embedding in regions less perceptible to the human eye, thereby enhancing trans-
parency. However, limitations associated with directionality and high-dimensional singularity
representation in DWT have spurred advancements like wavelet packets, multi-wavelet trans-
forms, and multi-directional wavelets (e.g., curvelets and ridgelets) [12, 14].

Ridgelets, introduced to address limitations of wavelets in representing line singularities
in higher dimensions [3], offer a powerful tool for image watermarking. The finite ridgelet
transform (FRIT) facilitates the implementation of ridgelets in a discrete manner, specifically
designed for representing linear singularities [4]. FRIT essentially transforms line singularities
into point singularities using the Radon transform, enabling efficient processing using one
dimensional wavelet transform.

Matrix factorization, a cornerstone technique in linear algebra, plays a vital role in various
applications, including watermarking. Singular Value Decomposition (SVD) is a widely em-
ployed factorization method in watermarking [8]. Bidiagonal SVD (BSVD) can be viewed as
an extension of SVD, offering an alternative and potentially more efficient approach for ma-
trix decomposition. Notably, while the singular values obtained from both SVD and BSVD
are identical, BSVD offers advantages in terms of computational efficiency [2, 7].

This paper introduces a new method for watermarking digital images. This technique com-
bines the advantages of two existing methods: FRIT and BSVD. The proposed method works
in several steps. First, it applies FRIT to the image being watermarked. FRIT transforms
the image into a new representation that highlights specific features, like lines and edges.
This transformed image is then broken down further using BSVD. BSVD decomposes the
image into its basic building blocks, allowing for manipulation of specific components. In
our approach, the watermark information, which is usually another image, directly alters the
singular values obtained from the FRIT coefficients. These singular values represent the most
important information in the transformed image. By carefully modifying them, we can embed
the watermark into the host image without significantly changing its appearance.

The remaining sections of this paper are organized as follows: Section 2 provides a basic
explanation of the underlying principles behind FRIT and BSVD. Section 3 describes the
FRIT-BSVD watermarking method in depth. Section 4 details the experiments and their
outcomes, followed by a concluding summary of key findings.

2. Foundational Concepts
This section explores two image processing techniques: FRIT, excelling at analyzing images

with straight edges through its frequency domain decomposition, and BSVD, a variant of SVD
that achieves decomposition in fewer steps. Both techniques play significant roles in various
image processing applications.

2.1. Finite Ridgelet Transform (FRIT). FRIT has gained prominence as a method for
spectral decomposition of digital images. It achieves this by analyzing the image in the
frequency domain along linear features. This analysis is accomplished through the Finite
Radon Transform (FRAT), which calculates the discrete summation of pixel intensities along
specific line segments. These line segments, analogous to those used in the continuous Radon
transform, are adapted to the finite grid structure of digital images. This adaptation allows
FRIT to effectively capture the spectral characteristics of structures with straight edges,
making it particularly valuable for various image processing applications.
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FRIT employs a two-step process for image representation. In the first step, FRAT de-
composes the image into components aligned with linear features. The second step utilizes a
one-dimensional wavelet transform for further analysis. FRAT operates within a finite field
denoted by Zp = {1, 2, 3, . . . , p − 1}, where p is a prime number and calculations exhibit
periodic wrapping around p. This finite field is crucial for adapting the continuous Radon
transform to the discrete structure of digital images. Within this framework, the FRAT an-
alyzes real-valued functions defined on a two-dimensional grid constructed from elements of
Zp. The specific transformation for a function f can be expressed mathematically as:

rk[l] = FRATf (k, l) =
1√
(p)

∑
(i,j)∈Lk,l

f [i, j](2.1)

where Lk,l denotes the set of points that define a straight line segment on the Z2
p as follows:

Lk,l = {(i, j) : j = ki+ l (mod p), i ∈ Zp}, 0 ≤ k < p,

Lp,l = {(l, j) : j ∈ Zp}.(2.2)

Benefiting from the invertibility of FRAT, FRIT itself can also be inverted. This desirable
property is achieved by applying a one-dimensional wavelet transform to each sequence of
projections rk[0], rk[1], . . . , rk[p− 1] obtained from the directional FRAT decomposition.

2.2. Bidiagonal Singular value decomposition (BSVD). Singular Value Decomposi-
tion (SVD) is a well-established tool in numerical analysis for matrix decomposition. This
decomposition finds significant applications in image processing tasks such as compression
and watermarking. SVD can be used independently or integrated with other image process-
ing techniques for watermarking [13, 15]. SVD possesses two key characteristics that make it
well-suited for watermarking applications:

(1) Resilience to Noise: Minor image distortions have minimal impact on singular values,
ensuring robustness.

(2) Capturing Image Information: By capturing an image’s core algebraic properties,
singular values offer a robust foundation for watermark embedding.

SVD decomposes an m×n matrix I into three separate matrices: I = U ×S×V T , where
U and V are orthogonal matrices and S is a diagonal matrix containing the singular values
(λi) arranged in descending order (i = 1, . . . ,m).

Building upon SVD, Bidiagonal SVD (BSVD) offers an alternative approach to spectral
decomposition. Notably, both techniques produce similar singular values, but their compu-
tational methods for calculating these values differ [2]. BSVD computation involves two key
steps:

Step1 (Bidiagonalization): This step transforms the input matrix I (m× n) into
a simpler form called a bidiagonal matrix. Equation (2.3) shows this transformation:

(2.3) I = UI × P × V T
I

Here, UI is an m × n orthonormal matrix, VI is an n × n unitary matrix, and P
is a special n × n matrix with non-zero entries only on the main diagonal and the
superdiagonal (strictly upper bidiagonal).
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Bidiagonalization shares similarities with SVD decomposition. However, it achieves
the decomposition in a finite number of operations, while SVD uses iterative methods
to find singular values. Common methods for bidiagonalization include:

• Golub-Kahan Bidiagonalization: This approach employs Householder reflections
applied sequentially from left and right sides of the matrix for dense matrices.

• Golub-Kahan-Lanczos Method: For large matrices, an iterative approach using
the Lanczos method is used.

Step 2 (SVD of the Bidiagonal Matrix): The second step applies SVD to the
bidiagonal matrix P obtained in step 1. This is shown in Equation (2.4):

(2.4) P = UP × S × V T
P

Here, UP and VP are both unitary matrices, and S is a diagonal matrix defined as:

(2.5) S = diag(λ1, λ2, . . . , λr)

The diagonal elements of S(λi) represent the singular values of matrix P , with r
being the minimum of m and n. These singular values are arranged in descending
order (λ1 ≥ λ2 ≥ ... ≥ λr).
Combining the Steps (The BSVD Decomposition): By substituting Equation
(2.4) into Equation (2.3), we obtain the complete BSVD decomposition of matrix I:

(2.6) I = UI × UP × S × V T
P × V T

I

This final equation shows how I is decomposed into a product of five matrices, reveal-
ing the underlying structure of BSVD.

SVD and BSVD tackle data analysis differently. Research [2] compared their effective-
ness in reconstructing images using their inverse forms. The study revealed that BSVD
achieved superior results, especially for datasets containing non-integer numbers, as mea-
sured by PSNR.

3. The Proposed Method
This paper presents a watermarking method using FRIT and BSVD. FRIT extracts image

features, and BSVD captures their spectral essence. The watermark is then embedded into
these singular values. Retrieval utilizes a similar process in reverse to extract the watermark.

3.1. The watermark embedding process.
Step 1: Apply FRIT to the original image (I). This step extracts features aligned
with linear structures in the image, resulting in a matrix of ridgelet coefficients (R).

(3.1) R = FRIT (I)

Step 2: Perform BSVD on the ridgelet coefficient matrix (R). This step decomposes R
into its singular values, which capture the essential spectral information of the image.

(3.2) [UI , UP , S, VI , VP ] = BSV D(R)

Step 3: Embed the watermark image (W ) into the singular values (S) using a scaling
factor (α). This modifies the singular values to imperceptibly encode the watermark.

(3.3) W ′ = S + α.W
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Step 4: Reconstruct a modified singular value matrix (S′) by Appling SVD on the
modified watermark (W ′).

(3.4)
[
U, S′, V

]
= SV D(W ′)

Step 5: Apply the inverse BSVD operation to reconstruct a modified version of the
ridgelet coefficient matrix (R′).

(3.5) R′ = UI × UP × S′ × V T
P × V T

I

Step 6: Perform the inverse FRIT operation on the modified ridgelet coefficients (R′).
This step transforms the coefficients back into the spatial domain, resulting in the
watermarked image (I∗).

3.2. The watermark extraction process. The watermark is retrieved using a procedure
that reverses most steps from the embedding process.

Step 1: Similar to embedding, apply FRIT to the watermarked image (I∗), resulting
in a matrix of ridgelet coefficients (R∗).

(3.6) R∗ = FRIT (I∗)

Step 2: Perform BSVD on the extracted ridgelet coefficient matrix (R∗). This step
decomposes R∗ into its singular values, containing the embedded watermark informa-
tion.

(3.7) [UI∗ , UP ∗ , S∗, VI∗ , VP ∗ ] = BSV D(R∗)

Step 3: Utilize the original embedding information (U and V matrices) obtained
during the embedding process. Combine these with the modified singular values (S∗)
from step 2 by an inverse SVD to estimate the modified watermarked (W ′).

(3.8) W ′ = U × S∗ × V

Step 4: Reconstruct the extracted watermark image (W ∗) using the matrix W ′ ob-
tained in step 3. This involves reversing the modifications made during embedding
process.

(3.9) W =
W ′ − S

α

4. Experimental results and comparative analysis
The performance of the proposed FRIT-BSVD watermarking method was evaluated using

a comprehensive set of experiments.

4.1. Dataset.
• Host Images: A diverse set of five grayscale images (257 x 257 pixels each) was se-

lected from the USC-SIPI image database to ensure the generalizability of the method
(Figure 1).

• Watermark: A separate grayscale watermark image of the same size was used for all
experiments (Figure 1).

The watermarking process incorporated a pre-defined scaling factor (α = 0.01) in both em-
bedding and extraction stages to achieve an optimal trade-off between imperceptibility and
robustness.
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Figure 1. (a) to (e): The host images and (f): The watermark image

4.2. Evaluation Metrics. The efficacy of watermarking schemes are assessed using two key
metrics: transparency and robustness.

Transparency measures the imperceptibility of the watermark. It is evaluated using two
well-established metrics:

• Peak Signal-to-Noise Ratio (PSNR): PSNR quantifies the maximum possible signal
power (peak signal) compared to the power of corrupting noise (background noise).
Higher PSNR values indicate better visual quality. The mathematical formula for
PSNR is provided below:

(4.1) PSNR = 10 log10

(
MAX(p)2

MSE

)
,

Within the formula, MAX(p) denotes the maximum intensity a single pixel can hold in
the image. The Mean Squared Error (MSE) metric, on the other hand, quantifies the
average squared difference in intensity values between the original and watermarked
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versions. The calculation for MSE is presented below:

(4.2) MSE =
1

xy

x−1∑
p=0

y−1∑
q=0

[O(p, q)−W (p, q)]2,

The equation uses x and y to stand for the image’s width and height. Additionally,
it uses O(p, q) and W (p, q) to represent the color value of the original image and the
watermarked image at specific points (p, q) on the grid, respectively.

• Structural Similarity Index Measure (SSIM): SSIM stands out from traditional metrics
like PSNR by prioritizing the preservation of structural details within images. It
accomplishes this through a window-based analysis, where the image is subdivided
into smaller regions for evaluation. The specific calculation for SSIM is presented in
the following equation:

(4.3) SSIM(O,W ) =
(2MoMw + c1)(2Vow + c2)

(M2
o +M2

w + c1)(V 2
o + V 2

w + c2)

where, Mo and Mw represent the average values of the original image (O) and the
watermarked image (W ), respectively. Similarly, V 2

o and V 2
w capture the variations

(variances) within O and W . The term Vow reflects the co-variation between O and
W , indicating how their intensity values change together. Finally, the constants c1
and c2 are included to prevent calculation issues when dealing with very small values,
which can happen during mathematical operations.

Robustness, a crucial requirement for watermarks, is resilience against attacks. Robustness
is assessed using the Normalized Cross Correlation (NC) metric, which serves as a quantitative
measure of similarity between the original watermark (W ) and the watermark extracted (W ′)
following an attack. It essentially captures how well the retrieved watermark aligns with the
original after undergoing potential distortions. The calculation for NC is presented in the
equation below:

NC(W,W ′) = ∑x−1
p=0

∑y−1
q=0(W (p, q)−Mw)(W

′(p, q)−Mw′)√∑x−1
p=0

∑y−1
q=0 (W (p, q)−Mw)

2
√∑x−1

p=0

∑y−1
q=0 (W

′(p, q)−Mw′)2
(4.4)

where Mw and Mw′ denote the mean intensity values of the original and extracted watermarks,
respectively.

A series of simulated real-world attacks that could potentially damage the embedded water-
mark were employed to evaluate the robustness of the watermarked images. These attacks in-
cluded filtering (average, Gaussian low-pass, and median), noise injection (Gaussian, speckle,
and salt-and-pepper), geometric transformations (gamma correction and histogram equaliza-
tion), and various image processing operations (JPEG compression, cropping, rotation, and
scaling). The NC metric was then employed to quantify the resilience of the watermark after
each attack.

4.3. Experimental Results. Table 1 shows NC values, which measure the similarity be-
tween the original watermark and the extracted watermark after various attacks were applied
to five sample images. These values assess the robustness of our proposed watermarking
scheme. The results are encouraging, with average NC values exceeding 0.9 for most attacks,
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Table 1. NC values comparison on the host images

Attack F16 Baboon Bridge Peppers Lena Average

Salt− and− Pepper Noise(0.01) 0.9616 0.9658 0.9647 0.9552 0.9543 0.96

Gaussian Noise(0.01) 0.8974 0.9421 0.9258 0.8775 0.8704 0.90

Speckle Noise(0.01) 0.9397 0.9643 0.9709 0.9637 0.9509 0.96

Average F iltering(3× 3) 0.9403 0.7967 0.8880 0.9577 0.9580 0.90

Gaussian low − pass(3× 3) 0.9803 0.9563 0.9695 0.9851 0.9844 0.98

Gaussian low − pass(9× 9) 0.9801 0.9562 0.9694 0.9853 0.9842 0.98

Median Filtering(3× 3) 0.9719 0.8651 0.9205 0.9761 0.9816 0.94

Scaling(0.25) 0.7947 0.6699 0.7284 0.8857 0.8738 0.79

Rotate(45) 0.8650 0.8435 0.9237 0.9018 0.9162 0.89

Rotate(90) 0.9744 0.9732 0.9762 0.9683 0.9806 0.97

Gamma Correction(0.9) 0.8629 0.8858 0.7854 0.8428 0.8695 0.85

Crop(25%) 0.7370 0.5627 0.6404 0.8543 0.7767 0.71

JPEG Compression(50) 0.9879 0.9816 0.9865 0.9893 0.9889 0.98

Histogram Equalization 0.9760 0.9617 0.9819 0.9859 0.9844 0.98

Table 2. Transparency comparison on the host images

F16 Baboon Bridge Peppers Lena

PSNR 76.462 79.608 85.916 76.329 74.025

SSIM 1 1 1 1 1

signifying successful watermark retrieval. While the lowest average NC (0.71) occurs for a
25% cropping attack, the method exhibits its best performance against JPEG compression
across all images.

The effectiveness of the proposed watermark embedding method in preserving image qual-
ity is evaluated in Table 2. PSNR and SSIM values, presented in the table, quantify the
transparency of the watermarked images. Higher values indicate that the watermarks are
well-hidden and do not significantly degrade the visual quality of the original images

4.4. Comparitive Analysis. Our method was evaluated against a related approach [6] using
the Lena image. The PSNR value achieved by our method (74.025) surpasses that of the
compared approach (32.12), signifying our method’s superior ability to preserve image quality
after watermark embedding.

Figure 2 further compares the robustness of both methods against various attacks. While
the fuzzy c-mean method in [6] exhibits perfect robustness (NC=1) for Gaussian low-pass
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filtering and slightly better performance for cropping at 25%, our method demonstrates over-
all competitive performance. Notably, our method outperforms the previous approach in
terms of robustness against attacks like salt-and-pepper noise, median filtering, and JPEG
compression, as shown by the consistently higher NC values.

Figure 2. The comparison of the NC values between the proposed method
and the approach FRIT-Fuzzy C-Mean [6] on Lena image.

Conclusion
This paper presented a watermarking method that uses the strengths of both FRIT and

BSVD for robust and transparent watermark embedding. FRIT pre-processes the image to
highlight key features, and BSVD decomposes it for targeted modification. The watermark
information is then imperceptibly embedded by altering the singular values obtained from
the FRIT coefficients. Our evaluation demonstrates the effectiveness of the proposed method.
Watermarked images maintain high visual quality, as confirmed by PSNR and SSIM values in
Table 1. Furthermore, Table 2 showcases the robustness of the method against various attacks,
with high average NC values exceeding 0.9. Even in the case of a 25% cropping attack,
the method exhibits acceptable robustness. Notably, it demonstrates superior resistance
compared to a related approach, as shown by the NC values in Figure 2 for attacks like
salt-and-pepper noise, median filtering, and JPEG compression.
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