

Research Paper

DUALITY AND α -DUALITY OF G-FRAMES AND FUSION FRAMES

MORTEZA MIRZAEE AZANDARYANI AND MAHMOOD POURGHOLAMHOSSEIN*

ABSTRACT. In this paper, we get some results about α -duals of g-frames and fusion frames in Hilbert spaces. Especially, the direct sums and tensor products for α -duals of g-frames and fusion frames are considered and some of the obtained results for duals are generalized to α -duals.

MSC(2010): 42C15.

Keywords: Hilbert space, g-frame, fusion frame, direct sum, tensor product, α -dual.

1. INTRODUCTION AND PRELIMINARIES

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [5] in 1952 to study some problems in nonharmonic Fourier series, reintroduced in 1986 by Daubechies, Grossmann and Meyer [4]. Many generalizations of frames have been introduced that one of the most important of them is g-frame introduced in [10].

Let *H* be a separable Hilbert space and let *I* be a finite or countable index set. A family $\mathcal{F} = \{f_i\}_{i \in I} \subseteq H$ is a *frame* for *H*, if there exist two positive numbers *A* and *B* such that

$$A||f||^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B||f||^2,$$

for each $f \in H$. A and B are the *lower* and *upper* frame bounds, respectively.

For each $i \in I$, let H_i be a Hilbert space. In this paper, $L(H, H_i)$ is the set of all bounded operators from H into H_i and L(H, H) is denoted by L(H).

Definition 1.1. We call $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in I\}$ a *g-frame* for H with respect to $\{H_i : i \in I\}$ if there exist two positive constants A and B such that

$$A\|f\|^{2} \leq \sum_{i \in I} \|\Lambda_{i}f\|^{2} \leq B\|f\|^{2},$$

for each $f \in H$. If only the second inequality is required, we call it a *g*-Bessel sequence with upper bound B. If A = B, Λ is called an A-tight g-frame.

Note that

$$\oplus_{i \in I} H_i = \left\{ \{f_i\}_{i \in I} | f_i \in H_i, \|\{f_i\}_{i \in I}\|_2^2 = \sum_{i \in I} \|f_i\|^2 < \infty \right\}$$

Date: Received: October 17, 2023, Accepted: December 10, 2023.

^{*}Corresponding author.

with pointwise operations and the inner product defined by

$$\langle \{f_i\}_{i \in I}, \{g_i\}_{i \in I} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle$$

is a Hilbert space. If $H_i = H$ for each $i \in I$, we denote $\bigoplus_{i \in I} H_i$ by $\ell^2(I, H)$. For a g-Bessel sequence $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in I\}$ the synthesis operator is $T_\Lambda : \bigoplus_{i \in I} H_i \longrightarrow H$, $T_\Lambda(\{f_i\}_{i \in I}) = \sum_{i \in I} \Lambda_i^* f_i$ and its adjoint operator which is $T_\Lambda^*(f) = \{\Lambda_i f\}_{i \in I}$ is called the analysis operator of Λ . The operator S_Λ is defined by $S_\Lambda = T_\Lambda T_\Lambda^*$. If Λ is a g-frame, then S_Λ is invertible. The canonical g-dual for Λ is defined by $\tilde{\Lambda} = \{\tilde{\Lambda}_i\}_{i \in I}$ where $\tilde{\Lambda}_i = \Lambda_i S_\Lambda^{-1}$ which is a g-frame and for each $f \in H$, we have

$$f = \sum_{i \in I} \Lambda_i^* \tilde{\Lambda}_i f = \sum_{i \in I} \tilde{\Lambda}_i^* \Lambda_i f.$$

Also a g-Bessel sequence $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in I\}$ is called an *alternate g-dual* or a *g-dual* or a *g-du*

$$f = \sum_{i \in I} \Gamma_i^* \Lambda_i f = \sum_{i \in I} \Lambda_i^* \Gamma_i f,$$

for each $f \in H$.

Another important generalization of frames is the fusion frame introduced in [3].

Let $\{W_i\}_{i\in I}$ be a family of closed subspaces of a Hilbert space H, and $\{\omega_i\}_{i\in I}$ be a family of weights, i.e., $\omega_i > 0$ for each $i \in I$. Then $\mathcal{W} = \{(W_i, \omega_i)\}_{i\in I}$ is a *fusion frame*, if there are two positive numbers A and B such that for each $f \in H$,

$$A||f||^{2} \leq \sum_{i \in I} \omega_{i}^{2} ||\pi_{W_{i}}(f)||^{2} \leq B||f||^{2},$$

where π_{W_i} is the orthogonal projection onto the subspace W_i . If only the right-hand inequality is required, then W is called a *Bessel fusion sequence*. If A = B, then W is called a *tight* fusion frame.

It is easy to see that if $\mathcal{W} = \{(W_i, \omega_i)\}_{i \in I}$ is a Bessel fusion sequence, then the operator $S_{\mathcal{W}}$ defined on H by $S_{\mathcal{W}}f = \sum_{i \in I} \omega_i^2 \pi_{W_i} f$ is well-defined, bounded and positive. Also, if \mathcal{W} is a fusion frame, then $S_{\mathcal{W}}$ is invertible.

Let $\mathcal{W} = \{(W_i, \omega_i)\}_{i \in I}$ and $\mathcal{V} = \{(V_i, \upsilon_i)\}_{i \in I}$ be two Bessel fusion sequences. Then, \mathcal{V} is called a dual of \mathcal{W} if $\sum_{i \in I} \upsilon_i \omega_i \pi_{W_i} \pi_{V_i} f = f$, for each $f \in H$, see [6].

Note that $\mathcal{W} = \{(W_i, \omega_i)\}_{i \in I}$ is a fusion frame if and only if $\Lambda_{\mathcal{W}} := \{\omega_i \pi_{W_i}\}_{i \in I}$ is a g-frame. Direct sums and tensor products of g-frames have been studied recently (see [1, 8, 9] and the references stated in these papers). Also, direct sums and tensor products of fusion frames in Hilbert spaces have been considered by some authors (for more information, see [7, 8] and the references stated therein).

In this note, we obtain some results for the tensor product and direct sum of α -duals for g-frames and fusion frames, mostly, we generalize the obtained results for duals in [8, 9] to α -duals.

2. Main Results

In this paper I, J and I_k , for each $1 \le k \le n$, are finite or countable index sets. H, H_j , H_k , H_{kj} , $H_{i(k)}$ and $H_{i(k)j}$ are separable Hilbert spaces for each $j \in J$, $k \in \{1, \ldots, n\}$ and

$$i(k) \in I_k. \ \Phi_j = \{\Lambda_{ij} \in L(H_j, H_{ij}) : i \in I\}, \ \Psi_j = \{\Gamma_{ij} \in L(H_j, H_{ij}) : i \in I\}, \ \Phi^{(k)} = \{\Lambda_{i(k)} \in L(H_k, H_{i(k)})\}_{i(k) \in I_k}, \ \Psi^{(k)} = \{\Gamma_{i(k)} \in L(H_k, H_{i(k)})\}_{i(k) \in I_k}, \ \otimes_{k=1}^n \Phi^{(k)} \text{ is } \{\Lambda_{i(1)} \otimes \ldots \otimes \Lambda_{i(n)} \in L(\otimes_{k=1}^n H_k, H_{i(1)} \otimes \ldots \otimes H_{i(n)})\}_{(i(1),\dots,i(n)) \in (I_1 \times \dots \times I_n)},$$

and $\Phi_j^{(k)} = \{\Lambda_{i(k)j} \in (H_{kj}, H_{i(k)j})\}_{i(k) \in I_k}$. Recall that if H_k is a Hilbert space for each $1 \le k \le n$, then the (Hilbert) tensor product $\otimes_{k=1}^{n} H_k = H_1 \otimes \ldots \otimes H_n$ is a Hilbert space. The inner product for simple tensors is defined by $\langle \otimes_{k=1}^{n} f_k, \otimes_{k=1}^{n} g_k \rangle = \prod_{k=1}^{n} \langle f_k, g_k \rangle$, where $f_k, g_k \in H_k$. If U_k is a bounded linear operator on H_k , then the tensor product $\otimes_{k=1}^{n} U_k$ is a bounded linear operator on $\otimes_{k=1}^{n} H_k$. Also $(\otimes_{k=1}^{n} U_{k})^{*} = \otimes_{k=1}^{n} U_{k}^{*} \text{ and } \| \otimes_{k=1}^{n} U_{k}^{*} \| = \prod_{k=1}^{n} \| U_{k} \|.$

Tensor products have important applications, for example tensor products are useful in the approximation of multi-variate functions of combinations of univariate ones.

We recall the following definition from [2].

Definition 2.1. Let $\alpha \in \mathbb{Z}$ and let $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in I\}$ be a g-frame. A g-frame $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in I\}$ is called an α -dual of $\{\Lambda_i\}_{i \in I}$ if $\sum_{i \in I} \Lambda_i^* \Gamma_i f = S_{\Lambda}^{\alpha} f$, for each $f \in H$.

ample 2.2. (i) Since $\sum_{i \in I} \Lambda_i^* \Lambda_i S_{\Lambda}^{\alpha-1} f = S_{\Lambda}^{\alpha} f$, $\{\Lambda_i S_{\Lambda}^{\alpha-1}\}_{i \in I}$ is an α -dual of Λ . (ii) If $\alpha = 0$, then $S_{\Lambda}^{\alpha-1} = S_{\Lambda}^{-1}$, so the canonical dual $(\{\Lambda_i S_{\Lambda}^{\alpha-1}\}_{i \in I})$ is a 0-dual of Λ . Example 2.2.

Now we get the following result for α -duals of g-frames.

Theorem 2.3. Suppose that $\Phi^{(k)}$'s and $\Psi^{(k)}$'s are g-frames. If $\Psi^{(k)}$ is an α -dual of $\Phi^{(k)}$, for each $k \in \{1, \ldots, n\}$, then $\bigotimes_{k=1}^{n} \Psi^{(k)}$ is an α -dual of $\bigotimes_{k=1}^{n} \Phi^{(k)}$.

Proof. Let A_k and B_k be bounds of $\Phi^{(k)}$. For each $1 \leq k \leq n$, we have

$$A_k.Id_{H_k} \le S_{\Phi^{(k)}} \le B_k.Id_{H_k},$$

 \mathbf{SO}

$$(\Pi_{k=1}^{n}A_{k}).Id_{(\otimes_{k=1}^{n}H_{k})} \le \otimes_{k=1}^{n}S_{\Phi^{(k)}} \le (\Pi_{k=1}^{n}B_{k}).Id_{(\otimes_{k=1}^{n}H_{k})}.$$

Therefore, for each $z \in \bigotimes_{k=1}^{n} H_k$, we get

$$(\Pi_{k=1}^n A_k)\langle z, z\rangle = \langle \otimes_{k=1}^n S_{\Phi^{(k)}} z, z\rangle \le (\Pi_{k=1}^n B_k)\langle z, z\rangle$$

and since

(2.1)
$$\langle \otimes_{k=1}^{n} S_{\Phi^{(k)}} z, z \rangle = \sum_{(i(1),\dots,i(n)) \in (I_1 \times \dots \times I_n)} \| (\Lambda_{i(1)} \otimes \dots \otimes \Lambda_{i(n)}) z \|^2$$

we get $\otimes_{k=1}^{n} \Phi^{(k)}$ is a g-frame. Similarly, we obtain that $\otimes_{k=1}^{n} \Psi^{(k)}$ is a g-frame. It is also obtained from (2.1) that $\otimes_{k=1}^{n} S_{\Phi^{(k)}} = S_{\otimes_{k=1}^{n} \Phi^{(k)}}$. Thus, for each $m \in \mathbb{N}$, we have

$$\otimes_{k=1}^n S^m_{\Phi^{(k)}} = (\otimes_{k=1}^n S_{\Phi^{(k)}})^m = S^m_{\otimes_{k=1}^n \Phi^{(k)}}$$

and

$$\otimes_{k=1}^{n} S_{\Phi^{(k)}}^{-1} = (\otimes_{k=1}^{n} S_{\Phi^{(k)}})^{-1} = S_{\otimes_{k=1}^{n} \Phi^{(k)}}^{-1},$$

so for each $\alpha \in \mathbb{Z}$, we have

$$\otimes_{k=1}^n S^{\alpha}_{\Phi^{(k)}} = (\otimes_{k=1}^n S_{\Phi^{(k)}})^{\alpha} = S^{\alpha}_{\otimes_{k=1}^n \Phi^{(k)}}.$$

Hence, for each $\otimes_{k=1}^{n} f_{i(k)} \in \otimes_{k=1}^{n} H_k$, we have

$$\sum_{\substack{(i(1),\dots,i(n))\in(I_1\times\dots\times I_n)\\ = \otimes_{k=1}^n S^{\alpha}_{\Phi^{(k)}}(\otimes_{k=1}^n f_{i(k)}) = (\otimes_{k=1}^n S_{\Phi^{(k)}})^{\alpha}(\otimes_{k=1}^n f_{i(k)})}$$

= $S^{\alpha}_{\otimes_{k=1}^n \Phi^{(k)}}(\otimes_{k=1}^n f_{i(k)}) = (\otimes_{k=1}^n S_{\Phi^{(k)}})^{\alpha}(\otimes_{k=1}^n f_{i(k)})$
= $S^{\alpha}_{\otimes_{k=1}^n \Phi^{(k)}}(\otimes_{k=1}^n f_{i(k)}).$

This implies that $\otimes_{k=1}^{n} \Psi^{(k)}$ is an α -dual of $\otimes_{k=1}^{n} \Phi^{(k)}$.

Corollary 2.4. Suppose that $\Phi^{(k)}$'s are A_k -tight g-frames. If $\Psi^{(k)}$ is an α -dual of $\Phi^{(k)}$, for each $k \in \{1, \ldots, n\}$, then

$$\{\frac{\Lambda_{i(1)} \otimes \dots \otimes \Lambda_{i(n)}}{A_{1}^{\alpha}}\}_{(i(1),\dots,i(n)) \in (I_{1} \times \dots \times I_{n})} and \{\frac{\Gamma_{i(1)} \otimes \dots \otimes \Gamma_{i(n)}}{(\prod_{k=2}^{n} A_{k})^{\alpha}}\}_{(i(1),\dots,i(n)) \in (I_{1} \times \dots \times I_{n})} are g-duals.$$

In the rest of this note, \mathcal{W} and \mathcal{V} are supposed to be $\{(W_i, \omega_i)\}_{i \in I}$ and $\{(V_i, v_i)\}_{i \in I}$, respectively. Also, here, I, J and I_k , for each $1 \leq k \leq n$, are finite or countable index sets. H, H_j , $H_{i(k)}$ and $H_{i(k)j}$ are separable Hilbert spaces for each $j \in J$, $k \in \{1, \ldots, n\}$ and $i(k) \in I_k$. $\mathcal{W}_j = \{(W_{ij}, \omega_i) : i \in I\}, \mathcal{V}_j = \{(V_{ij}, v_i) : i \in I\}, \mathcal{W}^{(k)} = \{(W_{i(k)}, \omega_{i(k)})\}_{i(k)\in I_k}, \mathcal{V}^{(k)} = \{(V_{i(k)}, v_{i(k)})\}_{i(k)\in I_k}, \otimes_{k=1}^n \mathcal{W}^{(k)}$ is

$$\{(W_{i(1)}\otimes\ldots\otimes W_{i(n)},\omega_{i(1)}\ldots\omega_{i(n)})\}_{(i(1),\ldots,i(n))\in(I_1\times\ldots\times I_n)},$$

and $\mathcal{W}_{j}^{(k)} = \{(W_{i(k)j}, \omega_{i(k)})\}_{i(k)\in I_{k}}$, where W_{ij}, V_{ij} are closed subspaces of $H_{j}, W_{i(k)}$ is a closed subspace of $H_{i(k)j}$ and $W_{i(k)j}$ is a closed subspace of $H_{i(k)j}$. Note that if M_{k} is a closed subspace of H_{k} , for each $1 \leq k \leq n$, then it is easy to see that $\pi_{\otimes_{k=1}^{n}M_{K}} = \bigotimes_{k=1}^{n} \pi_{M_{k}}$.

The concept of α -duality can also be defined for fusion frames similar to g-frames.

Definition 2.5. Let $\alpha \in \mathbb{Z}$ and \mathcal{W} and \mathcal{V} be two fusion frames for H. Then, \mathcal{V} is called an α -dual of \mathcal{W} if $\sum_{i \in I} v_i \omega_i \pi_{W_i} \pi_{V_i} f = S_{\mathcal{W}}^{\alpha} f$, for each $f \in H$.

Example 2.6. (i) Since $\sum_{i \in I} \omega_i \omega_i \pi_{W_i} \pi_{W_i} f = S_{\mathcal{W}} f$, \mathcal{W} is a 1-dual of itself. (ii) If \mathcal{V} is a dual of \mathcal{W} , then \mathcal{V} is a 0-dual of \mathcal{W} .

Now, we get the following result for α -duals of fusion frames.

Proposition 2.7. Suppose that $\mathcal{W}^{(k)}$'s and $\mathcal{V}^{(k)}$'s are fusion frames. If $\mathcal{V}^{(k)}$ is an α -dual of $\mathcal{W}^{(k)}$, for each $k \in \{1, \ldots, n\}$, then $\bigotimes_{k=1}^{n} \mathcal{V}^{(k)}$ is an α -dual of $\bigotimes_{k=1}^{n} \mathcal{W}^{(k)}$.

Proof. The result follows from Theorem 2.3 and using the fact that $\Phi^{(k)} := \{\omega_{i(k)} \pi_{W_{i(k)}}\}_{i(k) \in I_k} \text{ is a g-frame for each } 1 \leq k \leq n \text{ if and only if}$ $\otimes_{k=1}^n \Phi^{(k)} = \{\omega_{i(1)} \dots \omega_{i(n)} \pi_{(W_{i(1)} \otimes \dots \otimes W_{i(n)})}\}_{(i(1),\dots,i(n)) \in (I_1 \times \dots \times I_n)} \text{ is a g-frame.}$

Corollary 2.8. Suppose that $\mathcal{W}^{(k)}$'s are A_k -tight fusion frames. If $\mathcal{V}^{(k)}$ is an α -dual of $\mathcal{W}^{(k)}$, for each $k \in \{1, \ldots, n\}$, then

$$\left\{ \left(W_{i(1)} \otimes \ldots \otimes W_{i(n)}, \frac{\omega_{i(1)} \cdots \omega_{i(n)}}{A_1^{\alpha}} \right) \right\}_{(i(1),\ldots,i(n)) \in (I_1 \times \ldots \times I_n)}$$

and

$$\left\{ \left(V_{i(1)} \otimes \ldots \otimes V_{i(n)}, \frac{\upsilon_{i(1)} \ldots \upsilon_{i(n)}}{(\prod_{k=2}^{n} A_k)^{\alpha}} \right) \right\}_{(i(1),\ldots,i(n)) \in (I_1 \times \ldots \times I_n)}$$

are duals.

Let $\Phi_j = \{\Lambda_{ij} \in L(H_j, H_{ij}) : i \in I\}$ be a g-Bessel sequence for H_j , $j \in J$, with upper bound B_j such that $B := sup\{B_j : j \in J\} < \infty$. Then $\{\Phi_j\}_{j \in J}$ is called a *B*-Bounded family of g-Bessel sequences or shortly B-BFGBS.

Let $\Phi_j = {\Lambda_{ij} \in L(H_j, H_{ij}) : i \in I}$ be an (A_j, B_j) g-frame for $H_j, j \in J$, such that $A := inf{A_j : j \in J} > 0$ and $B := sup{B_j : j \in J} < \infty$. Then we say that ${\Phi_j}_{j \in J}$ is an (A, B)-bounded family of g-frames or shortly (A, B)-BFGF.

Theorem 2.9. Let $\{\Phi_j\}_{j\in J}$ and $\{\Psi_j\}_{j\in J}$ be BFGF. If Ψ_j is an α -dual of Φ_j , for each $j \in J$, then $\oplus_{j\in J}\Psi_j := \{\oplus_{j\in J}\Gamma_{ij} : i \in I\}$ is an α -dual for $\oplus_{j\in J}\Phi_j := \{\oplus_{j\in J}\Lambda_{ij} : i \in I\}$.

Proof. Suppose that $\{\Phi_j\}_{j\in J}$ is an (A, B)-BFGF. Then,

$$A.Id_{H_j} \leq S_{\Phi_j} \leq B.Id_{H_j},$$

for each $j \in J$, so

$$A.Id_{\oplus_{j\in J}H_j} \le \oplus_{j\in J}S_{\Phi_j} \le B.Id_{\oplus_{j\in J}H_j}$$

Consequently, for every $f_J = \{f_j\}_{j \in J} \in \bigoplus_{j \in J} H_j$, we get

$$A\langle\{f_j\}_{j\in J}, \{f_j\}_{j\in J}\rangle \leq \langle S_{\bigoplus_{j\in J}\Phi_j}(f_J), f_J\rangle$$

=
$$\sum_{i\in I}\sum_{j\in J} \|\Lambda_{ij}(f_j)\|^2 \leq B\langle\{f_j\}_{j\in J}, \{f_j\}_{j\in J}\rangle$$

Since

$$\sum_{i \in I} \left\| (\bigoplus_{j \in J} \Lambda_{ij}) f_J \right\|^2 = \sum_{i \in I} \sum_{j \in J} \left\| \Lambda_{ij}(f_j) \right\|^2$$

we obtain that $\oplus_{j\in J}\Phi_j$ is a g-frame for $\oplus_{j\in J}H_j$. Similarly, we can see that $\oplus_{j\in J}\Psi_j = \{\oplus_{j\in J}\Gamma_{ij}: i\in I\}$ is a g-frame. Also, we have

$$\langle S_{\oplus_{j\in J}\Phi_j}(f_J), f_J \rangle = \sum_{i\in I} \sum_{j\in J} \|\Lambda_{ij}(f_j)\|^2$$
$$= \sum_{j\in J} \sum_{i\in I} \|\Lambda_{ij}(f_j)\|^2 = \langle (\oplus_{j\in J} S_{\Phi_j}) f_J, f_J \rangle$$

therefore $S_{\oplus_{j\in J}\Phi_j} = \oplus_{j\in J}S_{\Phi_j}$. Now, it is easy to see that $S_{\oplus_{j\in J}\Phi_j}^n = \oplus_{j\in J}S_{\Phi_j}^n$, for each $n\in\mathbb{N}$ and $S_{\oplus_{j\in J}\Phi_j}^{-1} = \oplus_{j\in J}S_{\Phi_j}^{-1}$, so for each $\alpha\in\mathbb{Z}$, we have $S_{\oplus_{j\in J}\Phi_j}^{\alpha} = \oplus_{j\in J}S_{\Phi_j}^{\alpha}$. Also, for each $\{f_j\}_{j\in J}\in \oplus_{j\in J}H_j$, it is easy to see that

$$\sum_{i \in I} (\bigoplus_{j \in J} \Lambda_{ij})^* (\bigoplus_{j \in J} \Gamma_{ij}) \{f_j\}_{j \in J} = \left\{ \sum_{i \in I} \Lambda_{ij}^* \Gamma_{ij}(f_j) \right\}_{j \in J}$$
$$= \{S_{\Phi_j}^{\alpha}(f_j)\}_{j \in J} = (\bigoplus_{j \in J} S_{\Phi_j}^{\alpha})(\{f_j\}_{j \in J})$$
$$= S_{\oplus_{j \in J} \Phi_j}^{\alpha}(\{f_j\}_{j \in J}).$$

This means that $\bigoplus_{j \in J} \Psi_j = \{ \bigoplus_{j \in J} \Gamma_{ij} : i \in I \}$ is an α -dual for $\bigoplus_{j \in J} \Phi_j = \{ \bigoplus_{j \in J} \Lambda_{ij} : i \in I \}$. \Box

Corollary 2.10. Let $\{\Phi_j^{(k)}\}_{j\in J}$ and $\{\Psi_j^{(k)}\}_{j\in J}$ be BFGF, for each $1 \leq k \leq n$ and let $\Phi_j^{(k)}$ be an α -dual of $\Psi_j^{(k)}$, for each $j \in J$ and $k \in \{1, \ldots, n\}$. Then $\bigotimes_{k=1}^n (\bigoplus_{j\in J} \Phi_j^{(k)})$ is an α -dual of $\bigotimes_{k=1}^n (\bigoplus_{j\in J} \Psi_j^{(k)})$.

Proof. The result follows from Theorems 2.9 and 2.3.

Let $\mathcal{W}_j = \{(W_{ij}, \omega_i) : i \in I\}$ be a Bessel fusion sequence for H_j , $j \in J$, with upper bound B_j such that $B := \sup\{B_j : j \in J\} < \infty$. Then $\{\mathcal{W}_j\}_{j \in J}$ is called a *B*-Bounded family of Bessel fusion sequences or shortly B-BFBFS.

Let $\mathcal{W}_j = \{(W_{ij}, \omega_i) : i \in I\}$ be an (A_j, B_j) fusion frame for H_j , $j \in J$, such that $A := inf\{A_j : j \in J\} > 0$ and $B := sup\{B_j : j \in J\} < \infty$. Then, we say that $\{\mathcal{W}_j\}_{j \in J}$ is an (A, B)-bounded family of fusion frames or shortly (A, B)-BFFF.

The next theorem and corollary are immediate consequences of the results obtained for g-frames in Theorem 2.9 and Corollary 2.10, respectively.

Theorem 2.11. Let $\{\mathcal{W}_j\}_{j\in J}$ and $\{\mathcal{V}_j\}_{j\in J}$ be BFFF. If \mathcal{V}_j is an α -dual for \mathcal{W}_j , for each $j \in J$, then $\bigoplus_{j\in J}\mathcal{V}_j := \{(\bigoplus_{j\in J}V_{ij}, v_i) : i \in I\}$ is an α -dual for $\bigoplus_{j\in J}\mathcal{W}_j := \{(\bigoplus_{j\in J}W_{ij}, \omega_i) : i \in I\}$.

Corollary 2.12. Let $\{\mathcal{W}_{j}^{(k)}\}_{j\in J}$ and $\{\mathcal{V}_{j}^{(k)}\}_{j\in J}$ be BFFF, for each $1 \leq k \leq n$ and let $\mathcal{V}_{j}^{(k)}$ be an α -dual of $\mathcal{W}_{j}^{(k)}$, for each $j \in J$ and $k \in \{1, \ldots, n\}$. Then $\bigotimes_{k=1}^{n} (\bigoplus_{j\in J} \mathcal{V}_{j}^{(k)})$ is an α -dual of $\bigotimes_{k=1}^{n} (\bigoplus_{j\in J} \mathcal{W}_{j}^{(k)})$.

References

- A. Abdollahi and E. Rahimi, Generalized frames on super Hilbert spaces, Bull. Malays. Math. Sci. Soc., 35 (2012) 807–818.
- [2] M. R. Abdollahpour and A. Najati, G-frames and Hilbert-Schmidt operators, Bull. Iranian Math. Soc., 4 (2011) 141–155.
- [3] P. Casazza and G. Kutyniok, Frames of subspaces, Contemp. Math. Amer. Math. Soc., 345 (2004) 87–113.
- [4] I. Daubechies, A. Grossmann and Y. Meyer, *Painless nonorthogonal expansions*, J. Math. Phys., 27 (1986) 1271–1283.
- [5] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952) 341–366.
- [6] P. Gavruta, On the duality of fusion frames, J. Math. Anal. Appl., 333 (2007) 871-879.
- [7] A. Khosravi and M. S. Asgari, Frames of subspaces and approximation of the inverse frame operator, Houston J. Math., 33 (2007) 907–920.
- [8] A. Khosravi and M. Mirzaee Azandaryani, Fusion frames and g-frames in tensor product and direct sum of Hilbert spaces, Appl. Anal. Discrete Math., 6 (2012) 287–303.
- [9] A. Khosravi and M. Mirzaee Azandaryani, *G-frames and direct sums*, Bull. Malays. Math. Sci. Soc., 36 (2013) 313–323.
- [10] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322 (2006) 437–452.

(Morteza Mirzaee Azandaryani) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF QOM, QOM, IRAN. *Email address*: morteza_ma62@yahoo.com; m.mirzaee@qom.ac.ir

(Mahmood Pourgholamhossein) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF QOM, QOM, IRAN *Email address*: purgol@yahoo.com