

Research Paper

DUALITY AND *α***-DUALITY OF G-FRAMES AND FUSION FRAMES**

MORTEZA MIRZAEE AZANDARYANI AND MAHMOOD POURGHOLAMHOSSEIN*[∗]*

Abstract. In this paper, we get some results about *α*-duals of g-frames and fusion frames in Hilbert spaces. Especially, the direct sums and tensor products for *α*-duals of g-frames and fusion frames are considered and some of the obtained results for duals are generalized to *α*-duals.

MSC(2010): 42C15.

Keywords: Hilbert space, g-frame, fusion frame, direct sum, tensor product, *α*-dual.

1. Introduction and preliminaries

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [\[5\]](#page-5-0) in 1952 to study some problems in nonharmonic Fourier series, reintroduced in 1986 by Daubechies, Grossmann and Meyer [[4](#page-5-1)]. Many generalizations of frames have been introduced that one of the most important of them is g-frame introduced in [\[10](#page-5-2)].

Let *H* be a separable Hilbert space and let *I* be a finite or countable index set. A family $\mathcal{F} = \{f_i\}_{i \in I} \subseteq H$ is a *frame* for *H*, if there exist two positive numbers *A* and *B* such that

$$
A||f||^{2} \leq \sum_{i \in I} |\langle f, f_{i} \rangle|^{2} \leq B||f||^{2},
$$

for each $f \in H$. *A* and *B* are the *lower* and *upper* frame bounds, respectively.

For each $i \in I$, let H_i be a Hilbert space. In this paper, $L(H, H_i)$ is the set of all bounded operators from *H* into H_i and $L(H, H)$ is denoted by $L(H)$.

Definition 1.1. We call $\Lambda = \{\Lambda_i \in L(H, H_i) : i \in I\}$ a *g-frame* for *H* with respect to ${H_i : i \in I}$ if there exist two positive constants *A* and *B* such that

$$
A||f||^2 \le \sum_{i \in I} ||\Lambda_i f||^2 \le B||f||^2,
$$

for each *f ∈ H*. If only the second inequality is required, we call it a *g-Bessel sequence* with upper bound *B*. If $A = B$, Λ is called an A −tight g-frame.

Note that

$$
\bigoplus_{i \in I} H_i = \left\{ \{ f_i \}_{i \in I} | f_i \in H_i, \| \{ f_i \}_{i \in I} \|_2^2 = \sum_{i \in I} \| f_i \|^2 < \infty \right\}
$$

Date: Received: October 17, 2023 , Accepted: December 10, 2023.

*[∗]*Corresponding author.

with pointwise operations and the inner product defined by

$$
\langle \{f_i\}_{i \in I}, \{g_i\}_{i \in I} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle
$$

is a Hilbert space. If $H_i = H$ for each $i \in I$, we denote $\bigoplus_{i \in I} H_i$ by $\ell^2(I, H)$. For a g-Bessel sequence $\Lambda = {\Lambda_i \in L(H, H_i) : i \in I}$ the synthesis operator is $T_{\Lambda} : \bigoplus_{i \in I} H_i \longrightarrow$ $H, T_{\Lambda}(\{f_i\}_{i\in I}) = \sum_{i\in I} \Lambda_i^* f_i$ and its adjoint operator which is $T_{\Lambda}^*(f) = {\Lambda_i f}_{i\in I}$ is called the *analysis operator* of Λ . The operator S_{Λ} is defined by $S_{\Lambda} = T_{\Lambda} T_{\Lambda}^*$. If Λ is a g-frame, then S_{Λ} is invertible. The *canonical g-dual* for Λ is defined by $\widetilde{\Lambda} = {\{\widetilde{\Lambda}}_i\}_{i \in I}$ where $\widetilde{\Lambda}_i = \Lambda_i S_{\Lambda}^{-1}$ which is a g-frame and for each $f \in H$, we have

$$
f = \sum_{i \in I} \Lambda_i^* \tilde{\Lambda}_i f = \sum_{i \in I} \tilde{\Lambda_i}^* \Lambda_i f.
$$

Also a g-Bessel sequence $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in I\}$ is called an *alternate g-dual* or a *g-dual* for a g-Bessel sequence Λ if

$$
f=\sum_{i\in I}\Gamma_i^*\Lambda_if=\sum_{i\in I}\Lambda_i^*\Gamma_if,
$$

for each $f \in H$.

Anotherimportant generalization of frames is the fusion frame introduced in [[3](#page-5-3)].

Let $\{W_i\}_{i\in I}$ be a family of closed subspaces of a Hilbert space *H*, and $\{\omega_i\}_{i\in I}$ be a family of weights, i.e., $\omega_i > 0$ for each $i \in I$. Then $\mathcal{W} = \{(W_i, \omega_i)\}_{i \in I}$ is a *fusion frame*, if there are two positive numbers *A* and *B* such that for each $f \in H$,

$$
A||f||^2 \le \sum_{i \in I} \omega_i^2 ||\pi_{W_i}(f)||^2 \le B||f||^2,
$$

where π_{W_i} is the orthogonal projection onto the subspace W_i . If only the right-hand inequality is required, then *W* is called a *Bessel fusion sequence*. If $A = B$, then *W* is called a *tight fusion frame*.

It is easy to see that if $W = \{(W_i, \omega_i)\}_{i \in I}$ is a Bessel fusion sequence, then the operator S_W defined on *H* by $S_W f = \sum_{i \in I} \omega_i^2 \pi_{W_i} f$ is well-defined, bounded and positive. Also, if *W* is a fusion frame, then $S_{\mathcal{W}}$ is invertible.

Let $W = \{(W_i, \omega_i)\}_{i \in I}$ and $V = \{(V_i, \nu_i)\}_{i \in I}$ be two Bessel fusion sequences. Then, V is called a dual of *W* if $\sum_{i \in I} v_i \omega_i \pi_{W_i} \pi_{V_i} f = f$, for each $f \in H$, see [\[6\]](#page-5-4).

Note that $\mathcal{W} = \{(W_i, \omega_i)\}_{i \in I}$ is a fusion frame if and only if $\Lambda_{\mathcal{W}} := \{\omega_i \pi_{W_i}\}_{i \in I}$ is a g-frame. Direct sums and tensor products of g-frames have been studied recently (see $[1, 8, 9]$ $[1, 8, 9]$ $[1, 8, 9]$ $[1, 8, 9]$ and the references stated in these papers). Also, direct sums and tensor products of fusion frames in Hilbert spaces have been considered by some authors (for more information, see [\[7,](#page-5-8) [8\]](#page-5-6) and the references stated therein).

In this note, we obtain some results for the tensor product and direct sum of *α*-duals for g-frames and fusion frames, mostly, we generalize the obtained results for duals in $[8, 9]$ $[8, 9]$ $[8, 9]$ $[8, 9]$ $[8, 9]$ to *α*-duals.

2. Main Results

In this paper I, J and I_k , for each $1 \leq k \leq n$, are finite or countable index sets. H, H_j , *H_k*, *H_{kj}*, *H_i*(*k*) and *H_i*(*k*)*j* are separable Hilbert spaces for each $j \in J$, $k \in \{1, \ldots, n\}$ and

$$
i(k) \in I_k. \ \Phi_j = \{\Lambda_{ij} \in L(H_j, H_{ij}) : i \in I\}, \ \Psi_j = \{\Gamma_{ij} \in L(H_j, H_{ij}) : i \in I\}, \ \Phi^{(k)} = \{\Lambda_{i(k)} \in L(H_k, H_{i(k)})\}_{i(k) \in I_k}, \ \Psi^{(k)} = \{\Gamma_{i(k)} \in L(H_k, H_{i(k)})\}_{i(k) \in I_k}, \ \otimes_{k=1}^n \Phi^{(k)}
$$
is
$$
\{\Lambda_{i(1)} \otimes \ldots \otimes \Lambda_{i(n)} \in L(\otimes_{k=1}^n H_k, H_{i(1)} \otimes \ldots \otimes H_{i(n)})\}_{(i(1), \ldots, i(n)) \in (I_1 \times \ldots \times I_n)},
$$

and $\Phi_j^{(k)} = {\Lambda_{i(k)j} \in (H_{kj}, H_{i(k)j})}_{i(k) \in I_k}$.

Recall that if H_k is a Hilbert space for each $1 \leq k \leq n$, then the (Hilbert) tensor product $\otimes_{k=1}^{n} H_k = H_1 \otimes \ldots \otimes H_n$ is a Hilbert space. The inner product for simple tensors is defined $\lim_{k \to \infty} \langle \otimes_{k=1}^n f_k, \otimes_{k=1}^n g_k \rangle = \prod_{k=1}^n \langle f_k, g_k \rangle$, where $f_k, g_k \in H_k$. If U_k is a bounded linear operator on H_k , then the tensor product $\otimes_{k=1}^n U_k$ is a bounded linear operator on $\otimes_{k=1}^n H_k$. Also $(\otimes_{k=1}^n U_k)^* = \otimes_{k=1}^n U_k^*$ and $|| \otimes_{k=1}^n U_k || = \prod_{k=1}^n ||U_k||$.

Tensor products have important applications, for example tensor products are useful in the approximation of multi-variate functions of combinations of univariate ones.

We recall the following definition from [\[2](#page-5-9)].

Definition 2.1. Let $\alpha \in \mathbb{Z}$ and let $\Lambda = {\Lambda_i \in L(H, H_i) : i \in I}$ be a g-frame. A g-frame $\Gamma = \{\Gamma_i \in L(H, H_i) : i \in I\}$ is called an α -dual of $\{\Lambda_i\}_{i \in I}$ if $\sum_{i \in I} \Lambda_i^* \Gamma_i f = S_\Lambda^\alpha f$, for each $f \in H$.

Example 2.2. (i) Since $\sum_{i \in I} \Lambda_i^* \Lambda_i S_{\Lambda}^{\alpha-1} f = S_{\Lambda}^{\alpha} f$, $\{\Lambda_i S_{\Lambda}^{\alpha-1}\}_{i \in I}$ is an α -dual of Λ . (ii) If $\alpha = 0$, then $S_{\Lambda}^{\alpha-1} = S_{\Lambda}^{-1}$, so the canonical dual $(\{\Lambda_i S_{\Lambda}^{-1}\}_{i \in I})$ is a 0-dual of Λ .

Now we get the following result for *α*-duals of g-frames.

Theorem 2.3. Suppose that $\Phi^{(k)}$'s and $\Psi^{(k)}$'s are g-frames. If $\Psi^{(k)}$ is an α -dual of $\Phi^{(k)}$, for *each* $k \in \{1, \ldots, n\}$ *, then* $\otimes_{k=1}^{n} \Psi^{(k)}$ *is an* α -dual of $\otimes_{k=1}^{n} \Phi^{(k)}$ *.*

Proof. Let A_k and B_k be bounds of $\Phi^{(k)}$. For each $1 \leq k \leq n$, we have

$$
A_k.Id_{H_k} \le S_{\Phi^{(k)}} \le B_k.Id_{H_k},
$$

so

$$
(\Pi_{k=1}^{n} A_{k}) \cdot Id_{(\otimes_{k=1}^{n} H_{k})} \leq \otimes_{k=1}^{n} S_{\Phi^{(k)}} \leq (\Pi_{k=1}^{n} B_{k}) \cdot Id_{(\otimes_{k=1}^{n} H_{k})}.
$$

Therefore, for each $z \in \otimes_{k=1}^n H_k$, we get

$$
(\Pi_{k=1}^{n} A_k)\langle z, z\rangle = \langle \otimes_{k=1}^{n} S_{\Phi^{(k)}} z, z\rangle \leq (\Pi_{k=1}^{n} B_k)\langle z, z\rangle
$$

and since

$$
(2.1) \qquad \langle \otimes_{k=1}^n S_{\Phi^{(k)}} z, z \rangle = \sum_{(i(1),...,i(n)) \in (I_1 \times ... \times I_n)} \| (\Lambda_{i(1)} \otimes ... \otimes \Lambda_{i(n)}) z \|^2,
$$

we get $\otimes_{k=1}^n \Phi^{(k)}$ is a g-frame. Similarly, we obtain that $\otimes_{k=1}^n \Psi^{(k)}$ is a g-frame. It is also obtained from (2.1) (2.1) (2.1) that $\otimes_{k=1}^n S_{\Phi^{(k)}} = S_{\otimes_{k=1}^n \Phi^{(k)}}$. Thus, for each $m \in \mathbb{N}$, we have

$$
\otimes_{k=1}^n S_{\Phi^{(k)}}^m = (\otimes_{k=1}^n S_{\Phi^{(k)}})^m = S_{\otimes_{k=1}^n \Phi^{(k)}}^m,
$$

and

$$
\otimes_{k=1}^n S_{\Phi^{(k)}}^{-1} = (\otimes_{k=1}^n S_{\Phi^{(k)}})^{-1} = S_{\otimes_{k=1}^n \Phi^{(k)}}^{-1},
$$

so for each $\alpha \in \mathbb{Z}$, we have

$$
\otimes_{k=1}^n S_{\Phi(k)}^{\alpha} = (\otimes_{k=1}^n S_{\Phi(k)})^{\alpha} = S_{\otimes_{k=1}^n \Phi(k)}^{\alpha}.
$$

Hence, for each $\otimes_{k=1}^n f_{i(k)} \in \otimes_{k=1}^n H_k$, we have

$$
\sum_{\substack{(i(1),\ldots,i(n))\in(I_1\times\ldots\times I_n)\\ \bigotimes_{k=1}^n S_{\Phi^{(k)}}^{\alpha}(\bigotimes_{k=1}^n f_{i(k)}) = (\bigotimes_{k=1}^n S_{\Phi^{(k)}}^{\alpha}(\bigotimes_{k=1}^n f_{i(k)})^{\alpha}(\bigotimes_{k=1}^n f_{i(k)})\\ = S_{\bigotimes_{k=1}^n \Phi^{(k)}}^{\alpha}(\bigotimes_{k=1}^n f_{i(k)}).
$$

This implies that $\otimes_{k=1}^n \Psi^{(k)}$ is an *α*-dual of $\otimes_{k=1}^n \Phi^{(k)}$

Corollary 2.4. *Suppose that* $\Phi^{(k)}$'s are A_k -tight g-frames. If $\Psi^{(k)}$ is an α -dual of $\Phi^{(k)}$, for $\{each\; k \in \{1,\ldots,n\},\; then$

$$
\{\frac{\Lambda_{i(1)}\otimes\ldots\otimes\Lambda_{i(n)}}{A_1^{\alpha}}\}_{(i(1),\ldots,i(n))\in(I_1\times\ldots\times I_n)}\ and\ \{\frac{\Gamma_{i(1)}\otimes\ldots\otimes\Gamma_{i(n)}}{(\Pi_{k=2}^nA_k)^{\alpha}}\}_{(i(1),\ldots,i(n))\in(I_1\times\ldots\times I_n)}\ are\ g-duals.
$$

In the rest of this note, W and V are supposed to be $\{(W_i,\omega_i)\}_{i\in I}$ and $\{(V_i,\nu_i)\}_{i\in I}$, respectively. Also, here, I, J and I_k , for each $1 \leq k \leq n$, are finite or countable index sets. H, H_j , $H_{i(k)}$ and $H_{i(k)j}$ are separable Hilbert spaces for each $j \in J$, $k \in \{1, \ldots, n\}$ and $i(k) \in I_k$, $\mathcal{W}_j = \{(W_{ij}, \omega_i) : i \in I\}, \mathcal{V}_j = \{(V_{ij}, v_i) : i \in I\}, \mathcal{W}^{(k)} = \{(W_{i(k)}, \omega_{i(k)})\}_{i(k) \in I_k},$ $\mathcal{V}^{(k)} = \{ (V_{i(k)}, v_{i(k)}) \}_{i(k) \in I_k}, \otimes_{k=1}^n \mathcal{W}^{(k)}$ is

$$
\{(W_{i(1)}\otimes\ldots\otimes W_{i(n)},\omega_{i(1)}\ldots\omega_{i(n)})\}_{(i(1),\ldots,i(n))\in(I_1\times\ldots\times I_n)},
$$

and $W_j^{(k)} = \{(W_{i(k)j}, \omega_{i(k)})\}_{i(k) \in I_k}$, where W_{ij} , V_{ij} are closed subspaces of H_j , $W_{i(k)}$ is a closed subspace of $H_{i(k)}$ and $W_{i(k)j}$ is a closed subspace of $H_{i(k)j}$. Note that if M_k is a closed subspace of H_k , for each $1 \leq k \leq n$, then it is easy to see that $\pi_{\mathcal{D}_{k=1}^n M_K} = \mathcal{D}_{k=1}^n \pi_{M_k}$.

The concept of α -duality can also be defined for fusion frames similar to g-frames.

Definition 2.5. Let $\alpha \in \mathbb{Z}$ and \mathcal{W} and \mathcal{V} be two fusion frames for *H*. Then, \mathcal{V} is called an α -dual of *W* if $\sum_{i \in I} v_i \omega_i \pi_{W_i} \pi_{V_i} f = S^{\alpha}_{\mathcal{W}} f$, for each $f \in H$.

Example 2.6. $i \in I$ $\omega_i \omega_i \pi_{W_i} \pi_{W_i} f = S_W f$, *W* is a 1-dual of itself. (ii) If V is a dual of W , then V is a 0-dual of W .

Now, we get the following result for *α*-duals of fusion frames.

Proposition 2.7. *Suppose that* $W^{(k)}$'s and $V^{(k)}$'s are fusion frames. If $V^{(k)}$ is an α -dual of $\mathcal{W}^{(k)}$, for each $k \in \{1, ..., n\}$, then $\otimes_{k=1}^n \mathcal{V}^{(k)}$ is an α -dual of $\otimes_{k=1}^n \mathcal{W}^{(k)}$.

Proof. The result follows from Theorem [2.3](#page-2-1) and using the fact that $\Phi^{(k)} := {\omega_{i(k)} \pi_{W_{i(k)}}}_{i(k) \in I_k}$ is a g-frame for each $1 \leq k \leq n$ if and only if $\otimes_{k=1}^n \Phi^{(k)} = \{\omega_{i(1)} \dots \omega_{i(n)} \pi_{(W_{i(1)} \otimes \dots \otimes W_{i(n)})}\}_{(i(1),...,i(n)) \in (I_1 \times \dots \times I_n)}$ is a g-frame.

Corollary 2.8. *Suppose that* $W^{(k)}$'s are A_k *-tight fusion frames.* If $V^{(k)}$ is an α -dual of $\mathcal{W}^{(k)}$ *, for each* $k \in \{1, \ldots, n\}$ *, then*

$$
\left\{ \left(W_{i(1)} \otimes \ldots \otimes W_{i(n)}, \frac{\omega_{i(1)} \ldots \omega_{i(n)}}{A_1^{\alpha}} \right) \right\}_{(i(1), \ldots, i(n)) \in (I_1 \times \ldots \times I_n)}
$$

and

$$
\left\{ \left(V_{i(1)} \otimes \ldots \otimes V_{i(n)}, \frac{\upsilon_{i(1)} \ldots \upsilon_{i(n)}}{(\Pi_{k=2}^{n} A_k)^{\alpha}}\right)\right\}_{(i(1),\ldots,i(n)) \in (I_1 \times \ldots \times I_n)}
$$

are duals.

. □

Let $\Phi_j = {\Lambda_{ij} \in L(H_j, H_{ij}) : i \in I}$ be a g-Bessel sequence for $H_j, j \in J$, with upper bound B_j such that $B := sup\{B_j : j \in J\} < \infty$. Then $\{\Phi_j\}_{j \in J}$ is called a *B-Bounded family of g-Bessel sequences* or shortly *B-BFGBS*.

Let $\Phi_i = {\Lambda_{ij} \in L(H_i, H_{ij}) : i \in I}$ be an (A_i, B_i) g-frame for $H_i, j \in J$, such that $A := inf\{A_j : j \in J\} > 0$ and $B := sup\{B_j : j \in J\} < \infty$. Then we say that $\{\Phi_j\}_{j \in J}$ is an (*A, B*)*-bounded family of g-frames* or shortly (*A, B*)*-BFGF*.

Theorem 2.9. Let $\{\Phi_j\}_{j\in J}$ and $\{\Psi_j\}_{j\in J}$ be BFGF. If Ψ_j is an α -dual of Φ_j , for each $j \in J$, then $\oplus_{j\in J}\Psi_j := \{\oplus_{j\in J}\Gamma_{ij} : i\in I\}$ is an α -dual for $\oplus_{j\in J}\Phi_j := \{\oplus_{j\in J}\Lambda_{ij} : i\in I\}.$

Proof. Suppose that ${\{\Phi_j\}_{j\in J}}$ is an (A, B) -BFGF. Then,

$$
A.Id_{H_j} \le S_{\Phi_j} \le B.Id_{H_j},
$$

for each $j \in J$, so

$$
A.Id_{\oplus_{j\in J}H_j} \leq \oplus_{j\in J}S_{\Phi_j} \leq B.Id_{\oplus_{j\in J}H_j}.
$$

Consequently, for every $f_J = \{f_j\}_{j \in J} \in \bigoplus_{j \in J} H_j$, we get

$$
A \langle \{f_j\}_{j\in J}, \{f_j\}_{j\in J} \rangle \leq \langle S_{\oplus_{j\in J}\Phi_j}(f_J), f_J \rangle
$$

=
$$
\sum_{i\in I} \sum_{j\in J} ||\Lambda_{ij}(f_j)||^2 \leq B \langle \{f_j\}_{j\in J}, \{f_j\}_{j\in J} \rangle.
$$

Since

$$
\sum_{i\in I} \|(\bigoplus_{j\in J} \Lambda_{ij}) f_J\|^2 = \sum_{i\in I} \sum_{j\in J} \|\Lambda_{ij}(f_j)\|^2,
$$

we obtain that $\bigoplus_{j\in J}\Phi_j$ is a g-frame for $\bigoplus_{j\in J}H_j$. Similarly, we can see that $\bigoplus_{j\in J}\Psi_j$ = $\{\oplus_{i\in J}\Gamma_{ij}: i\in I\}$ is a g-frame. Also, we have

$$
\langle S_{\oplus_{j\in J}\Phi_j}(f_J), f_J \rangle = \sum_{i\in I} \sum_{j\in J} \|\Lambda_{ij}(f_j)\|^2
$$

=
$$
\sum_{j\in J} \sum_{i\in I} \|\Lambda_{ij}(f_j)\|^2 = \langle (\oplus_{j\in J} S_{\Phi_j})f_J, f_J \rangle,
$$

therefore $S_{\oplus_{j\in J}\Phi_j} = \oplus_{j\in J} S_{\Phi_j}$. Now, it is easy to see that $S_{\oplus_{j\in J}\Phi_j}^n = \oplus_{j\in J} S_{\Phi_j}^n$, for each $n \in \mathbb{N}$ and S_{\oplus}^{-1} $S_{\oplus_{j\in J}\Phi_j}^{\alpha-1} = \oplus_{j\in J} S_{\Phi_j}^{-1}$, so for each $\alpha \in \mathbb{Z}$, we have $S_{\oplus_{j\in J}\Phi_j}^{\alpha} = \oplus_{j\in J} S_{\Phi_j}^{\alpha}$. Also, for each ${f_j}_{j \in J}$ ∈ $\oplus_{j \in J}$ *H*_{*j*}, it is easy to see that

$$
\sum_{i \in I} (\bigoplus_{j \in J} \Lambda_{ij})^* (\bigoplus_{j \in J} \Gamma_{ij}) \{ f_j \}_{j \in J} = \left\{ \sum_{i \in I} \Lambda_{ij}^* \Gamma_{ij} (f_j) \right\}_{j \in J}
$$

\n
$$
= \{ S^{\alpha}_{\Phi_j} (f_j) \}_{j \in J} = (\bigoplus_{j \in J} S^{\alpha}_{\Phi_j}) (\{ f_j \}_{j \in J})
$$

\n
$$
= S^{\alpha}_{\oplus_{j \in J} \Phi_j} (\{ f_j \}_{j \in J}).
$$

This means that $\oplus_{i\in J}\Psi_i = \{\oplus_{i\in J}\Gamma_{ij} : i\in I\}$ is an α -dual for $\oplus_{i\in J}\Phi_i = \{\oplus_{i\in J}\Lambda_{ij} : i\in I\}$. \Box

Corollary 2.10. *Let* $\{\Phi_i^{(k)}\}$ $\{(\binom{k}{j}\}_{j \in J}$ *and* $\{\Psi_j^{(k)}\}$ $\{e^{(k)}\}_{j \in J}$ *be BFGF, for each* 1 ≤ *k* ≤ *n and let* $\Phi_j^{(k)}$ $j^{(\kappa)}$ be *an* α -dual of $\Psi_i^{(k)}$ *f*^{*s*}</sup>, for each *j* ∈ *J* and k ∈ {1, . . . , n}*.* Then ⊗ⁿ_{*k*=1}(⊕_{*j*∈*J*} $\Phi_j^{(k)}$ *j*) *is an α-dual of* $\otimes_{k=1}^n(\oplus_{j\in J}\Psi_j^{(k)}$ $j^{(k)}$).

Proof. The result follows from Theorems [2.9](#page-4-0) and [2.3](#page-2-1). \Box

Let $\mathcal{W}_j = \{(W_{ij}, \omega_i) : i \in I\}$ be a Bessel fusion sequence for $H_j, j \in J$, with upper bound B_j such that $B := sup\{B_j : j \in J\} < \infty$. Then $\{W_j\}_{j \in J}$ is called a *B-Bounded family of Bessel fusion sequences* or shortly *B-BFBFS*.

Let $W_i = \{(W_{ij}, \omega_i) : i \in I\}$ be an (A_i, B_i) fusion frame for $H_i, j \in J$, such that $A := \inf\{A_j : j \in J\} > 0$ and $B := \sup\{B_j : j \in J\} < \infty$. Then, we say that $\{W_j\}_{j \in J}$ is an (*A, B*)*-bounded family of fusion frames* or shortly (*A, B*)*-BFFF*.

The next theorem and corollary are immediate consequences of the results obtained for g-frames in Theorem [2.9](#page-4-0) and Corollary [2.10](#page-4-1), respectively.

Theorem 2.11. Let $\{W_j\}_{j\in J}$ and $\{V_j\}_{j\in J}$ be BFFF. If V_j is an α -dual for W_j , for each $j \in J$, then $\oplus_{i\in J}V_j:=\{(\oplus_{i\in J}V_{ij},v_i):i\in I\}$ is an α -dual for $\oplus_{j\in J}W_j:=\{(\oplus_{j\in J}W_{ij},\omega_i):i\in I\}.$

Corollary 2.12. Let $\{W_j^{(k)}\}_{j\in J}$ and $\{V_j^{(k)}\}_{j\in J}$ be BFFF, for each $1 \leq k \leq n$ and let $V_j^{(k)}$ $j^{(\kappa)}$ be *an* α -dual of $\mathcal{W}_i^{(k)}$ *j*^{*s*}, for each *j* ∈ *J* and k ∈ {1, . . . , n}*.* Then ⊗ⁿ_{*k*=1}(⊕_{*j*∈*J*} $V_j^{(k)}$ $j_j^{(\kappa)}$ *is an α-dual of* $\otimes_{k=1}^n (\oplus_{j \in J} \mathcal{W}_j^{(k)}$ $j^{(\kappa)}$).

REFERENCES

- [1] A. Abdollahi and E. Rahimi, *Generalized frames on super Hilbert spaces*, Bull. Malays. Math. Sci. Soc., **35** (2012) 807–818.
- [2] M. R. Abdollahpour and A. Najati, *G-frames and Hilbert-Schmidt operators*, Bull. Iranian Math. Soc., **4** (2011) 141–155.
- [3] P. Casazza and G. Kutyniok, *Frames of subspaces*, Contemp. Math. Amer. Math. Soc., **345** (2004) 87–113.
- [4] I. Daubechies, A. Grossmann and Y. Meyer, *Painless nonorthogonal expansions*, J. Math. Phys., **27** (1986) 1271–1283.
- [5] R. J. Duffin and A. C. Schaeffer, *A class of nonharmonic Fourier series*, Trans. Amer. Math. Soc., **72** (1952) 341–366.
- [6] P. Gavruta, *On the duality of fusion frames*, J. Math. Anal. Appl., **333** (2007) 871–879.
- [7] A. Khosravi and M. S. Asgari, *Frames of subspaces and approximation of the inverse frame operator*, Houston J. Math., **33** (2007) 907–920.
- [8] A. Khosravi and M. Mirzaee Azandaryani, *Fusion frames and g-frames in tensor product and direct sum of Hilbert spaces*, Appl. Anal. Discrete Math., **6** (2012) 287–303.
- [9] A. Khosravi and M. Mirzaee Azandaryani, *G-frames and direct sums*, Bull. Malays. Math. Sci. Soc., **36** (2013) 313–323.
- [10] W. Sun, *G-frames and g-Riesz bases*, J. Math. Anal. Appl., **322** (2006) 437–452.

(Morteza Mirzaee Azandaryani) Department of Mathematics, University of Qom, Qom, Iran. *Email address*: morteza ma62@yahoo.com; m.mirzaee@qom.ac.ir

(Mahmood Pourgholamhossein) Department of Mathematics, University of Qom, Qom, Iran *Email address*: purgol@yahoo.com