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Abstract. In this paper we introduce a new sequence of mappings in connection to Hermite-
Hadamard type inequality. Some bounds and refinements of Hermite-Hadamard inequality
for convex functions via this sequence are given.

MSC(2010): 26D15 ; 53C21.
Keywords: Hermite-Hadamard inequality, Jensen inequality, convex functions.

1. Introduction
Let I ⊆ R be an interval, f : I → R be a convex function and a, b ∈ I, a < b. We consider

the well-known Hermite-Hadamard inequality

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
.

Both inequalities hold in the reversed direction if f is concave. We note that Hermite-
Hadamard inequality may be regarded as a refinement of the concept of convexity and it
follows easily from Jensen’s inequality. Several refinements and generalizations of the in-
equality (1.1) have been found in [1-15] and references therein. In order to provide various
refinements of this result, S.S. Dragomir introduced two mappings H,F : [0, 1] → R, in [5] and
[6] respectively as follows and established several results in connection to Hermite-Hadamard
inequality;

H(t) : =
1

b− a

∫ b

a
f
(
tx+ (1− t)

a+ b

2

)
dx,

F (t) : =
1

(b− a)2

∫ b

a

∫ b

a
f
(
tx+ (1− t)y

)
dxdy.

Since then numerous articles have appeared in the literature reflecting further applications
and properties of these mappings (see [3-11]) and references therein. On the other hand the
sequence of mappings Hn : [0, 1] → R associated to mapping H defined by;

Hn(t) : =
1

(b− a)n

∫ b

a
...

∫ b

a
f
(
t
x1 + ...+ xn

n
+ (1− t)

a+ b

2

)
dx1...dxn,

is introduced by S.S. Dragomir in [9]. We recall some of the main properties of Hn:
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Theorem 1.1. Let f : I → R be a convex function and a, b ∈ I with a < b. Then, we have
(i) Hn is convex on [0, 1].
(ii) One has the following bounds;

(1.2) inf
t∈[0,1]

Hn(t) = Hn(0) = f
(a+ b

2

)
and

(1.3) sup
t∈[0,1]

Hn(t) = Hn(1).

(iii) Hn increases monotonically on [0, 1].
(iv) For every n ≥ 1 and t ∈ [0, 1] one has

(1.4) f
(a+ b

2

)
≤ ... ≤ Hn+1(t) ≤ Hn(t) ≤ ... ≤ H1(t) = H(t).

(v) If a, b ∈ I◦ with a < b then, for every n ≥ 1 and t ∈ [0, 1] we have

(1.5) 0 ≤ Hn(t)− f
(a+ b

2

)
≤ t(b− a)M

2
√
3
√
n

,

where M := supx∈[a,b] |f ′
+(x)| and f ′

+(x) is the right derivative of f at x. In particular

(1.6) lim
n→∞

Hn(t) = f
(a+ b

2

)
.

In this paper we introduce a new sequence of mappings associated to the mapping F and
establish new inequalities in connection to Hermite-Hadamard inequality.

2. Main Results
Motivated by [9] we define the sequence of mappings Fn : [0, 1] → R, associated to mapping

F as follows,

Fn(t) : =
1

(b− a)n+1∫ b

a
...

∫ b

a
f
(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
dx1...dxn+1,

where, f : I → R is a real valued function, I ⊆ R is an interval and a, b ∈ I with a < b. Note
that for every n ≥ 1,

(2.1) Fn(1) = Hn(1), Fn(0) =
1

b− a

∫ b

a
f(x)dx.

In this section we study the properties of this sequence and introduce some results in connec-
tion to Hermite-Hadamard inequality. We start with the the following theorem.

Theorem 2.1. Let f : I → R be a convex function and a, b ∈ I with a < b. Then;

(i) The mapping Fn is convex on [0, 1], for every n ≥ 1.
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(ii) For every n ≥ 1 and t ∈ [0, 1] one has

(2.2) f
(a+ b

2

)
≤

∫ 1

0
Fn(t)dt ≤

2(b− a)Hn(1) +
∫ b
a f(x)dx

2(b− a)
.

(iii) If Jn(t) := Fn(t)+Fn(1−t)
2 then, for every n ≥ 1, Jn is convex on [0, 1].

(iv) For every n ≥ 1 the following inequalities hold,

inf
t∈[0,1]

Jn(t) = Jn(
1

2
),

(2.3) Fn(t) ≤ Fn(0) =
1

b− a

∫ b

a
f(x)dx, for all t ∈ [0, 1].

(v) For every n ≥ 1 and t ∈ [0, 1] we have

(2.4) Hn(t) ≤ Fn(t).

(vi) For every n ≥ 1, Jn(t) decreases monotonically on [0, 12 ] and increases monotonically on

[12 , 1].

Proof. (i) Using the definition of Fn and the convexity of f, the proof is obvious.

(ii) By simple computation and using Jensen’s integral type inequality we have

(2.5)

f
(a+ b

2

)
= f

(
1

(b− a)n+1

∫ b

a
...

∫ b

a

(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
dx1...dxn+1

)
≤ 1

(b− a)n+1

∫ b

a
...

∫ b

a
f
(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
dx1...dxn+1

= Fn(t).

Since Fn is convex, by integrating in (2.5) and using Hermite-Hadamard inequality we obtain

the required result in (2.2).

(iii) Using the convexity of Fn, the result is obvious.

(iv) By convexity of f for every t ∈ [0, 1] we have

1

2

[
f
(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
+ f

(
(1− t)

x1 + ...+ xn
n

+ txn+1

)]
≥ f

(1
2

(x1 + ...+ xn
n

+ xn+1

))
.
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Hence by integrating on [a, b]n+1 we get

Jn(t) =
1

2

(
Fn(t) + Fn(1− t))

=
1

2(b− a)n+1

[∫ b

a
...

∫ b

a

(
f
(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
+f

(
(1− t)

x1 + ...+ xn
n

+ txn+1

))
dx1...dxn+1

]
≥ 1

(b− a)n+1

[∫ b

a
...

∫ b

a
f
(1
2

(x1 + ...+ xn
n

+ xn+1

)]
= Fn(

1

2
)

= Jn(
1

2
).

For second inequality in (iv) we note that,

f
(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
≤ tf

(x1 + ...+ xn
n

)
+ (1− t)f(xn+1)

≤ t
f(x1) + ...+ f(xn)

n
+ (1− t)f(xn+1),

by discrete Jense’s inequality. So integrating on [a, b]n+1 implies that

Fn(t) ≤
1

2(b− a)n+1∫ b

a
...

∫ b

a

(
t
f(x1) + ...+ f(xn)

n
+ (1− t)f(xn+1))

)
dx1...dxn+1

= t
1

b− a

∫ b

a
f(x)dx+ (1− t)

1

b− a

∫ b

a
f(x)dx

=
1

b− a

∫ b

a
f(x)dx = Fn(0).

(v) For every n ≥ 1 and t ∈ [0, 1) applying Jensen’s integral type inequality on [a, b] give us

1

(b− a)

∫ b

a
f
(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
dxn+1

≥ f
[ 1

(b− a)

∫ b

a

(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
dxn+1

]
= f

(
t
x1 + ...+ xn

n
+ (1− t)

a+ b

2

)
.

Taking integral on [a, b]n give us the inequality in (2.4).

(vi) By statement (iv) for every t ∈ [0, 1], Jn(t) ≥ Jn(
1
2) so, by convexity of Jn, for every

1 ≥ s > t > 1
2 we have

Jn(s)− Jn(t)

s− t
≥

Jn(t)− Jn(
1
2)

t− 1
2

≥ 0,
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hence Jn(s) ≥ Jn(t). The fact that Jn decreases monotonically on [0, 12 ] is similar. □

Now, we give the following result on monotonicity of the sequence Fn which completes the
above theorem.

Theorem 2.2. Let f : I → R be a convex function and a, b ∈ I, a < b. Then for every

t ∈ [0, 1] one has

(2.6) f
(a+ b

2

)
≤ ... ≤ Fn+1(t) ≤ Fn(t) ≤ ... ≤ F1(t) = F (t).

Proof. If t = 1 then by (2.1) the inequality (2.6) is trivially holds. Suppose that t ∈ [0, 1).

Then, for every x1, ..., xn+2 ∈ [a, b] we define the real numbers y1, ..., yn+1 as follows

y1 :=t
x1 + ...+ xn

n
+ (1− t)xn+2,

y2 :=t
x2 + x1 + ...+ xn−1

n
+ (1− t)xn+2,

.

.

.

yn+1 :=t
xn+1 + x1 + ...+ xn−1

n
+ (1− t)xn+2.

Note that

y1 + ...+ yn+1

n+ 1
= t

x1 + ...+ xn+1

n+ 1
+ (1− t)xn+2.

Hence, by using Jensen’s type inequality we get

f
(
t
x1 + ...+ xn+1

n+ 1
+ (1− t)xn+2

)
= f

(y1 + ...+ yn+1

n+ 1

)
≤ f(y1) + ...+ f(yn+1)

n+ 1

=
1

n+ 1

[
f
(
t
x1 + ...+ xn

n
+ (1− t)xn+2

)
+ ...

+f
(
t
xn+1 + x1 + ...+ xn−1

n
+ (1− t)xn+2

)]
.
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Taking integral on [a, b]n+2 implies that

Fn+1(t) ≤
1

n+ 1

[
1

(b− a)n+2

×
∫ b

a
...

∫ b

a
f
(
t
x1 + ...+ xn

n
+ (1− t)xn+2

)
dx1...dxn+2

+...+
1

(b− a)n+2

∫ b

a
...

∫ b

a
f
(
t
xn+1 + x1 + ...+ xn−1

n

+(1− t)xn+2

)
dx1...dxn+2

]
=

1

n+ 1

[
(n+ 1)

b− a

(b− a)n+1∫ b

a
...

∫ b

a
f
(
t
x1 + ...+ xn

n
+ (1− t)xn+2

)
dx1...dxndxn+2

]
= Fn(t).

This complets the proof. □

Remark 2.3. From (1), (2.3), (2.6) for every n ≥ 1 and t ∈ [0, 1] we have

(2.7)
f
(a+ b

2

)
≤ ... ≤ Fn+1(t) ≤ Fn(t) ≤ ... ≤ F1(t)

≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
.

Now, it is natural to ask what happens with the difference 1
b−a

∫ b
a f(x)dx − Fn(t) for all

t ∈ [0, 1). The following theorem give us an upper bound for this difference for t ∈ [0, 1).

Theorem 2.4. Let f : I → R be a convex function and a, b ∈ I◦, a < b. Then for every

t ∈ [0, 1) we have the following inequality

0 ≤ 1

b− a

∫ b

a
f(x)dx− Fn(t)

≤ t
√
2(n+ 1)1/4√

n

[∫ b

a

(
f ′
+(x)

)2
dx

]1/2
.

Proof. By convexity of f we have

f
(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
− f(xn+1)

≥ tf ′
+(xn+1)

(x1 + ...+ xn
n

− xn+1

)
.
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Integrating on [a, b]n+1 and using Hölder’s inequality deduce that

(2.8)

0 ≤ 1

b− a

∫ b

a
f(x)dx− Fn(t)

≤ t

(b− a)n+1

∫ b

a
...

∫ b

a
f ′
+(xn+1)

(
xn+1 −

x1 + ...+ xn
n

)
dx1...dxn+1

≤ t

(b− a)n+1

[∫ b

a
...

∫ b

a

(
f ′
+(xn+1)

)2
dx1...dxn+1

]1/2
×
[∫ b

a
...

∫ b

a

(
xn+1 −

x1 + ...+ xn
n

)2
dx1...dxn+1

]1/2
=

t

(b− a)n+2/2

[∫ b

a

(
f ′
+(x)

)2
dx

]1/2
×
[∫ b

a
...

∫ b

a

(
xn+1 −

x1 + ...+ xn
n

)2
dx1...dxn+1

]1/2
.

Let g(x) :=
(
xn+1 − x1+...+xn

n

)2
= 1

n2

(∑n
i=1(xn+1 − xi)

)2
then,

∇g(x) =
2

n2

n∑
i=1

(xn+1 − xi)(−1, ...,−1, 1).

Hence,

(2.9)
||∇g(x)|| = 2

n2

∣∣∣∣∣
n∑

i=1

(xi − xn+1)

∣∣∣∣∣ (n+ 1)1/2

≤ 2(n+ 1)1/2

n2

n∑
i=1

∣∣xi − xn+1

∣∣ ≤ 2(n+ 1)1/2

n
(b− a).

By combining (2.8) and (2.9) we obtain

0 ≤ 1

b− a

∫ b

a
f(x)dx− Fn(t)

≤ t
√
2(n+ 1)1/4√

n

[∫ b

a

(
f ′
+(x)

)2
dx

]1/2
,

and proof is completed. □

The following corollaries are immediate consequence of Theorem 2.4.

Corollary 2.5. Under the assumptions of theorem 2.4 if M := supx∈[a,b] |f ′
+(x)|, then for all

t ∈ [0, 1) and n ≥ 1 we have the inequality

0 ≤ 1

b− a

∫ b

a
f(x)dx− Fn(t) ≤

√
2(n+ 1)1/4M

√
b− a√

n
.
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In particular we obtain

lim
n→∞

Fn(t) =
1

b− a

∫ b

a
f(x)dx, for all t ∈ [0, 1).

Corollary 2.6. Under the assumptions of theorem 2.4 one has the following inequality

0 ≤ 1

b− a

∫ b

a
f(x)dx− Jn(t)

≤ (n+ 1)1/4√
2n

[∫ b

a

(
f ′
+(x)

)2
dx

]1/2
.

The following result also holds;

Theorem 2.7. Let f : I → R be a convex function and a, b ∈ I◦ with a < b. Suppose that

there exits a constant K > 0 such that∣∣f ′
+(x)− f ′

+(y)
∣∣ ≤ K|x− y|, for all x, y ∈ [a, b].

Then we have the inequality

tFn(1) + (1− t)Fn(0)− Fn(t) ≤
2t(1− t)(n+ 1)1/2K

n
(b− a),

for all t ∈ [0, 1] and n ≥ 1.

Proof. By convexity of f for every x1, ..., xn+1 ∈ [a, b] and t ∈ [0, 1] we have

(2.10)
f
(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
− f(

x1 + ...+ xn
n

)

≥ (1− t)f ′
+

(x1 + ...+ xn
n

)(
xn+1 −

x1 + ...+ xn
n

)
,

and

(2.11)
f
(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
− f(xn+1)

≥ −tf ′
+

(
xn+1

)(
xn+1 −

x1 + ...+ xn
n

)
.

If we multiply the inequalities (2.10) and (2.11) by t and 1 − t, respectively and added the

obtained results we obtain

tf(
x1 + ...+ xn

n
) + (1− t)f(xn+1)

− f
(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
≤ t(1− t)[

f ′
+

(x1 + ...+ xn
n

)
− f ′

+

(
xn+1

)](x1 + ...+ xn
n

− xn+1

)
.
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Integrating on [a, b]n+1 and using (9) implies that

tFn(1) + (1− t)Fn(0)− Fn(t)

≤ t(1− t)
1

(b− a)n+1

∫ b

a
...

∫ b

a

[
f ′
+

(x1 + ...+ xn
n

)
− f ′

+

(
xn+1

)]
×
(x1 + ...+ xn

n
− xn+1

)
dx1...dxn+1

≤ t(1− t)K

(b− a)n+1

∫ b

a
...

∫ b

a

(x1 + ...+ xn
n

− xn+1

)2
dx1...dxn+1

≤ 2t(1− t)K(n+ 1)1/2

n
(b− a).

This completes the proof. □

Finally an upper bound for the difference Fn(t)−Hn(t), n ≥ 1, t ∈ [0, 1], is as follows.

Theorem 2.8. Let f : I → R be a convex function and a, b ∈ I◦ with a < b. Then, for all

t ∈ [0, 1] and n ≥ 1 we have the inequality

0 ≤ Fn(t)−Hn(t)

≤ (1− t)(b− a)

2

[
1

(b− a)n+1

∫ b

a
...

∫ b

a

(
f ′
+

(
t
x1 + ...+ xn

n

+(1− t)xn+1

))2
dx1...dxn+1

]1/2
.

Proof. By convexity of f for every x1, ..., xn+1 ∈ [a, b] and t ∈ [0, 1] we have

f
(
t
x1 + ...+ xn

n
+ (1− t)

a+ b

2

)
− f

(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
≥ (1− t)f ′

+

(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)(a+ b

2
− xn+1

)
.
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Integrating on [a, b]n+1 and using Hölder’s inequality implies that

0 ≤ Fn(t)−Hn(t)

≤ 1− t

(b− a)n+1

∫ b

a
...

∫ b

a
f ′
+

(
t
x1 + ...+ xn

n
+ (1− t)xn+1

)
(
xn+1 −

a+ b

2

)
dx1...dxn+1 ≤

1− t

(b− a)n+1

[∫ b

a
...

∫ b

a(
f ′
+

(
t
x1 + ...+ xn

n
+ (1− t)xn+1

))2
dx1...dxn+1

]1/2
[∫ b

a
...

∫ b

a

(
xn+1 −

a+ b

2

)2
dx1...dxn+1

]1/2
=

(1− t)(b− a)

2

[
1

(b− a)n+1

∫ b

a
...

∫ b

a

(
f ′
+

(
t
x1 + ...+ xn

n

+(1− t)xn+1

))2
dx1...dxn+1

]1/2
.

This completes the proof. □

Corollary 2.9. Under the assumptions as in theorem (2.8) if K := supx∈[a,b] |f ′
+(x)| one has

0 ≤ Fn(t)−Hn(t) ≤
(1− t)K

2
(b− a),

for every n ≥ 1, t ∈ [0, 1].
In particular we have

0 ≤ F (t)−H(t) ≤ (1− t)K

2
(b− a).

The following example gives a refinement and upper bound related to inequality (1.1).

Example 2.10. Consider the convex function f : I → R, f(x) := ex, for n = 1 and for every

t ∈ [0, 1], we have

F1(t) =
1

(b− a)2

∫ b

a

∫ b

a
etx+(1−t)ydxdy,

where a, b ∈ I, with a < b. If t = 0 or t = 1, we see that

F1(0) = F1(1) =
1

b− a

∫ b

a
exdx =

eb − ea

b− a
.

Thus inequalities in (2.7) are valid. It is easy to see that for every t ∈ (0, 1) we have

F1(t) =
1

(b− a)2(1− t)t

(
etb − eta

)(
e(1−t)b − e(1−t)a

)
.
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From equality
a+ b

2
=

1

(b− a)2

∫ b

a

∫ b

a
(tx+ (1− t)y)dxdy,

by jensen’s type integral inequality we get

f
(a+ b

2

)
=f

( 1

(b− a)2

∫ b

a

∫ b

a
(tx+ (1− t)y)dxdy

)
≤ 1

(b− a)2

∫ b

a

∫ b

a
f(tx+ (1− t)y)dxdy

=F1(t).

Also from the inequalities (2.3), (1.1) we note that

F1(t) ≤
1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
,

therefore the inequality (2.7) holds. Now, simple computation gives an upper bound for the

difference 1
b−a

∫ b
a f(x)dx− F1(t) for all t ∈ [0, 1]. Using Theorem 2.4 implies that

0 ≤ 1

b− a

∫ b

a
exdx− F1(t)

≤ t
√
2(2)1/4

[∫ b

a
e2xdx

]1/2
= t(2)1/4

(
e2b − e2a

)1/2
.

Conclusion
In this paper, we have given a sequence of mappings associated to the mapping F. This

sequence gives us some new refinements and bounds related to well known Hermite-Hadamard
inequality.
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