Mathematical Analysis

Research Paper

SOME NEW REFINEMENTS OF HERMITE-HADAMARD INEQUALITY VIA A SEQUENCE OF MAPPINGS

NOZAR SAFAEI

Abstract

In this paper we introduce a new sequence of mappings in connection to HermiteHadamard type inequality. Some bounds and refinements of Hermite-Hadamard inequality for convex functions via this sequence are given.

MSC(2010): 26D15 ; 53C21.
Keywords: Hermite-Hadamard inequality, Jensen inequality, convex functions.

1. Introduction

Let $I \subseteq \mathbb{R}$ be an interval, $f: I \rightarrow \mathbb{R}$ be a convex function and $a, b \in I, a<b$. We consider the well-known Hermite-Hadamard inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} . \tag{1.1}
\end{equation*}
$$

Both inequalities hold in the reversed direction if f is concave. We note that HermiteHadamard inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen's inequality. Several refinements and generalizations of the inequality (1.1) have been found in [1-15] and references therein. In order to provide various refinements of this result, S.S. Dragomir introduced two mappings $H, F:[0,1] \rightarrow \mathbb{R}$, in [5] and [6] respectively as follows and established several results in connection to Hermite-Hadamard inequality;

$$
\begin{aligned}
H(t) & :=\frac{1}{b-a} \int_{a}^{b} f\left(t x+(1-t) \frac{a+b}{2}\right) d x, \\
F(t) & :=\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f(t x+(1-t) y) d x d y .
\end{aligned}
$$

Since then numerous articles have appeared in the literature reflecting further applications and properties of these mappings (see [3-11]) and references therein. On the other hand the sequence of mappings $H_{n}:[0,1] \rightarrow \mathbb{R}$ associated to mapping H defined by;

$$
H_{n}(t):=\frac{1}{(b-a)^{n}} \int_{a}^{b} \ldots \int_{a}^{b} f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) \frac{a+b}{2}\right) d x_{1} \ldots d x_{n}
$$

is introduced by S.S. Dragomir in [9]. We recall some of the main properties of H_{n} :

Theorem 1.1. Let $f: I \rightarrow \mathbb{R}$ be a convex function and $a, b \in I$ with $a<b$. Then, we have (i) H_{n} is convex on $[0,1]$.
(ii) One has the following bounds;

$$
\begin{equation*}
\inf _{t \in[0,1]} H_{n}(t)=H_{n}(0)=f\left(\frac{a+b}{2}\right) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{t \in[0,1]} H_{n}(t)=H_{n}(1) . \tag{1.3}
\end{equation*}
$$

(iii) H_{n} increases monotonically on $[0,1]$.
(iv) For every $n \geq 1$ and $t \in[0,1]$ one has

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \ldots \leq H_{n+1}(t) \leq H_{n}(t) \leq \ldots \leq H_{1}(t)=H(t) . \tag{1.4}
\end{equation*}
$$

(v) If $a, b \in I^{\circ}$ with $a<b$ then, for every $n \geq 1$ and $t \in[0,1]$ we have

$$
\begin{equation*}
0 \leq H_{n}(t)-f\left(\frac{a+b}{2}\right) \leq \frac{t(b-a) M}{2 \sqrt{3} \sqrt{n}} \tag{1.5}
\end{equation*}
$$

where $M:=\sup _{x \in[a, b]}\left|f_{+}^{\prime}(x)\right|$ and $f_{+}^{\prime}(x)$ is the right derivative of f at x. In particular

$$
\begin{equation*}
\lim _{n \rightarrow \infty} H_{n}(t)=f\left(\frac{a+b}{2}\right) . \tag{1.6}
\end{equation*}
$$

In this paper we introduce a new sequence of mappings associated to the mapping F and establish new inequalities in connection to Hermite-Hadamard inequality.

2. Main Results

Motivated by [9] we define the sequence of mappings $F_{n}:[0,1] \rightarrow \mathbb{R}$, associated to mapping F as follows,

$$
\begin{aligned}
F_{n}(t): & =\frac{1}{(b-a)^{n+1}} \\
& \int_{a}^{b} \ldots \int_{a}^{b} f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right) d x_{1} \ldots d x_{n+1},
\end{aligned}
$$

where, $f: I \rightarrow \mathbb{R}$ is a real valued function, $I \subseteq \mathbb{R}$ is an interval and $a, b \in I$ with $a<b$. Note that for every $n \geq 1$,

$$
\begin{equation*}
F_{n}(1)=H_{n}(1), F_{n}(0)=\frac{1}{b-a} \int_{a}^{b} f(x) d x . \tag{2.1}
\end{equation*}
$$

In this section we study the properties of this sequence and introduce some results in connection to Hermite-Hadamard inequality. We start with the the following theorem.

Theorem 2.1. Let $f: I \rightarrow \mathbb{R}$ be a convex function and $a, b \in I$ with $a<b$. Then;
(i) The mapping F_{n} is convex on $[0,1]$, for every $n \geq 1$.
(ii) For every $n \geq 1$ and $t \in[0,1]$ one has

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \int_{0}^{1} F_{n}(t) d t \leq \frac{2(b-a) H_{n}(1)+\int_{a}^{b} f(x) d x}{2(b-a)} \tag{2.2}
\end{equation*}
$$

(iii) If $J_{n}(t):=\frac{F_{n}(t)+F_{n}(1-t)}{2}$ then, for every $n \geq 1, J_{n}$ is convex on $[0,1]$.
(iv) For every $n \geq 1$ the following inequalities hold,

$$
\begin{gather*}
\inf _{t \in[0,1]} J_{n}(t)=J_{n}\left(\frac{1}{2}\right), \\
F_{n}(t) \leq F_{n}(0)=\frac{1}{b-a} \int_{a}^{b} f(x) d x, \text { for all } t \in[0,1] . \tag{2.3}
\end{gather*}
$$

(v) For every $n \geq 1$ and $t \in[0,1]$ we have

$$
\begin{equation*}
H_{n}(t) \leq F_{n}(t) \tag{2.4}
\end{equation*}
$$

(vi) For every $n \geq 1, J_{n}(t)$ decreases monotonically on $\left[0, \frac{1}{2}\right]$ and increases monotonically on $\left[\frac{1}{2}, 1\right]$.

Proof. (i) Using the definition of F_{n} and the convexity of f, the proof is obvious.
(ii) By simple computation and using Jensen's integral type inequality we have

$$
\begin{align*}
& f\left(\frac{a+b}{2}\right) \\
& =f\left(\frac{1}{(b-a)^{n+1}} \int_{a}^{b} \ldots \int_{a}^{b}\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right) d x_{1} \ldots d x_{n+1}\right) \tag{2.5}\\
& \leq \frac{1}{(b-a)^{n+1}} \int_{a}^{b} \ldots \int_{a}^{b} f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right) d x_{1} \ldots d x_{n+1} \\
& =F_{n}(t) .
\end{align*}
$$

Since F_{n} is convex, by integrating in (2.5) and using Hermite-Hadamard inequality we obtain the required result in (2.2).
(iii) Using the convexity of F_{n}, the result is obvious.
(iv) By convexity of f for every $t \in[0,1]$ we have

$$
\begin{aligned}
& \frac{1}{2}\left[f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right)+f\left((1-t) \frac{x_{1}+\ldots+x_{n}}{n}+t x_{n+1}\right)\right] \\
& \geq f\left(\frac{1}{2}\left(\frac{x_{1}+\ldots+x_{n}}{n}+x_{n+1}\right)\right)
\end{aligned}
$$

Hence by integrating on $[a, b]^{n+1}$ we get

$$
\begin{aligned}
J_{n}(t) & =\frac{1}{2}\left(F_{n}(t)+F_{n}(1-t)\right) \\
& =\frac{1}{2(b-a)^{n+1}}\left[\int _ { a } ^ { b } \cdots \int _ { a } ^ { b } \left(f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right)\right.\right. \\
& \left.\left.+f\left((1-t) \frac{x_{1}+\ldots+x_{n}}{n}+t x_{n+1}\right)\right) d x_{1} \ldots d x_{n+1}\right] \\
& \geq \frac{1}{(b-a)^{n+1}}\left[\int_{a}^{b} \cdots \int_{a}^{b} f\left(\frac{1}{2}\left(\frac{x_{1}+\ldots+x_{n}}{n}+x_{n+1}\right)\right]=F_{n}\left(\frac{1}{2}\right)\right. \\
& =J_{n}\left(\frac{1}{2}\right) .
\end{aligned}
$$

For second inequality in (iv) we note that,

$$
\begin{aligned}
& f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right) \\
& \leq t f\left(\frac{x_{1}+\ldots+x_{n}}{n}\right)+(1-t) f\left(x_{n+1}\right) \\
& \leq t \frac{f\left(x_{1}\right)+\ldots+f\left(x_{n}\right)}{n}+(1-t) f\left(x_{n+1}\right)
\end{aligned}
$$

by discrete Jense's inequality. So integrating on $[a, b]^{n+1}$ implies that

$$
\begin{aligned}
F_{n}(t) & \leq \frac{1}{2(b-a)^{n+1}} \\
& \left.\int_{a}^{b} \ldots \int_{a}^{b}\left(t \frac{f\left(x_{1}\right)+\ldots+f\left(x_{n}\right)}{n}+(1-t) f\left(x_{n+1}\right)\right)\right) d x_{1} \ldots d x_{n+1} \\
& =t \frac{1}{b-a} \int_{a}^{b} f(x) d x+(1-t) \frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& =\frac{1}{b-a} \int_{a}^{b} f(x) d x=F_{n}(0)
\end{aligned}
$$

(v) For every $n \geq 1$ and $t \in[0,1)$ applying Jensen's integral type inequality on $[a, b]$ give us

$$
\begin{aligned}
& \frac{1}{(b-a)} \int_{a}^{b} f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right) d x_{n+1} \\
& \geq f\left[\frac{1}{(b-a)} \int_{a}^{b}\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right) d x_{n+1}\right] \\
& =f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) \frac{a+b}{2}\right)
\end{aligned}
$$

Taking integral on $[a, b]^{n}$ give us the inequality in (2.4).
(vi) By statement (iv) for every $t \in[0,1], J_{n}(t) \geq J_{n}\left(\frac{1}{2}\right)$ so, by convexity of J_{n}, for every $1 \geq s>t>\frac{1}{2}$ we have

$$
\frac{J_{n}(s)-J_{n}(t)}{s-t} \geq \frac{J_{n}(t)-J_{n}\left(\frac{1}{2}\right)}{t-\frac{1}{2}} \geq 0
$$

hence $J_{n}(s) \geq J_{n}(t)$. The fact that J_{n} decreases monotonically on $\left[0, \frac{1}{2}\right]$ is similar.
Now, we give the following result on monotonicity of the sequence F_{n} which completes the above theorem.

Theorem 2.2. Let $f: I \rightarrow \mathbb{R}$ be a convex function and $a, b \in I, a<b$. Then for every $t \in[0,1]$ one has

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \ldots \leq F_{n+1}(t) \leq F_{n}(t) \leq \ldots \leq F_{1}(t)=F(t) . \tag{2.6}
\end{equation*}
$$

Proof. If $t=1$ then by (2.1) the inequality (2.6) is trivially holds. Suppose that $t \in[0,1)$. Then, for every $x_{1}, \ldots, x_{n+2} \in[a, b]$ we define the real numbers y_{1}, \ldots, y_{n+1} as follows

$$
\begin{aligned}
& y_{1}:=t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+2}, \\
& y_{2}:=t \frac{x_{2}+x_{1}+\ldots+x_{n-1}}{n}+(1-t) x_{n+2}
\end{aligned}
$$

$$
y_{n+1}:=t \frac{x_{n+1}+x_{1}+\ldots+x_{n-1}}{n}+(1-t) x_{n+2}
$$

Note that

$$
\frac{y_{1}+\ldots+y_{n+1}}{n+1}=t \frac{x_{1}+\ldots+x_{n+1}}{n+1}+(1-t) x_{n+2} .
$$

Hence, by using Jensen's type inequality we get

$$
\begin{aligned}
& f\left(t \frac{x_{1}+\ldots+x_{n+1}}{n+1}+(1-t) x_{n+2}\right)=f\left(\frac{y_{1}+\ldots+y_{n+1}}{n+1}\right) \\
& \leq \frac{f\left(y_{1}\right)+\ldots+f\left(y_{n+1}\right)}{n+1} \\
& =\frac{1}{n+1}\left[f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+2}\right)+\ldots\right. \\
& \left.+f\left(t \frac{x_{n+1}+x_{1}+\ldots+x_{n-1}}{n}+(1-t) x_{n+2}\right)\right] .
\end{aligned}
$$

Taking integral on $[a, b]^{n+2}$ implies that

$$
\begin{aligned}
& F_{n+1}(t) \leq \frac{1}{n+1}\left[\frac{1}{(b-a)^{n+2}}\right. \\
& \times \int_{a}^{b} \ldots \int_{a}^{b} f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+2}\right) d x_{1} \ldots d x_{n+2} \\
& +\ldots+\frac{1}{(b-a)^{n+2}} \int_{a}^{b} \ldots \int_{a}^{b} f\left(t \frac{x_{n+1}+x_{1}+\ldots+x_{n-1}}{n}\right. \\
& \left.\left.+(1-t) x_{n+2}\right) d x_{1} \ldots d x_{n+2}\right]=\frac{1}{n+1}\left[(n+1) \frac{b-a}{(b-a)^{n+1}}\right. \\
& \left.\int_{a}^{b} \ldots \int_{a}^{b} f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+2}\right) d x_{1} \ldots d x_{n} d x_{n+2}\right] \\
& =F_{n}(t) .
\end{aligned}
$$

This complets the proof.

Remark 2.3. From (1), (2.3), (2.6) for every $n \geq 1$ and $t \in[0,1]$ we have

$$
\begin{align*}
f\left(\frac{a+b}{2}\right) & \leq \ldots \leq F_{n+1}(t) \leq F_{n}(t) \leq \ldots \leq F_{1}(t) \\
& \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{2.7}
\end{align*}
$$

Now, it is natural to ask what happens with the difference $\frac{1}{b-a} \int_{a}^{b} f(x) d x-F_{n}(t)$ for all $t \in[0,1)$. The following theorem give us an upper bound for this difference for $t \in[0,1)$.

Theorem 2.4. Let $f: I \rightarrow \mathbb{R}$ be a convex function and $a, b \in I^{\circ}, a<b$. Then for every $t \in[0,1)$ we have the following inequality

$$
\begin{aligned}
0 & \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x-F_{n}(t) \\
& \leq \frac{t \sqrt{2}(n+1)^{1 / 4}}{\sqrt{n}}\left[\int_{a}^{b}\left(f_{+}^{\prime}(x)\right)^{2} d x\right]^{1 / 2} .
\end{aligned}
$$

Proof. By convexity of f we have

$$
\begin{aligned}
& f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right)-f\left(x_{n+1}\right) \\
& \geq t f_{+}^{\prime}\left(x_{n+1}\right)\left(\frac{x_{1}+\ldots+x_{n}}{n}-x_{n+1}\right)
\end{aligned}
$$

Integrating on $[a, b]^{n+1}$ and using Hölder's inequality deduce that

$$
\begin{align*}
0 & \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x-F_{n}(t) \\
& \leq \frac{t}{(b-a)^{n+1}} \int_{a}^{b} \ldots \int_{a}^{b} f_{+}^{\prime}\left(x_{n+1}\right)\left(x_{n+1}-\frac{x_{1}+\ldots+x_{n}}{n}\right) d x_{1} \ldots d x_{n+1} \\
& \leq \frac{t}{(b-a)^{n+1}}\left[\int_{a}^{b} \ldots \int_{a}^{b}\left(f_{+}^{\prime}\left(x_{n+1}\right)\right)^{2} d x_{1} \ldots d x_{n+1}\right]^{1 / 2} \\
& \times\left[\int_{a}^{b} \ldots \int_{a}^{b}\left(x_{n+1}-\frac{x_{1}+\ldots+x_{n}}{n}\right)^{2} d x_{1} \ldots d x_{n+1}\right]^{1 / 2} \tag{2.8}\\
& =\frac{t}{(b-a)^{n+2 / 2}}\left[\int_{a}^{b}\left(f_{+}^{\prime}(x)\right)^{2} d x\right]^{1 / 2} \\
& \times\left[\int_{a}^{b} \ldots \int_{a}^{b}\left(x_{n+1}-\frac{x_{1}+\ldots+x_{n}}{n}\right)^{2} d x_{1} \ldots d x_{n+1}\right]^{1 / 2} .
\end{align*}
$$

Let $g(x):=\left(x_{n+1}-\frac{x_{1}+\ldots+x_{n}}{n}\right)^{2}=\frac{1}{n^{2}}\left(\sum_{i=1}^{n}\left(x_{n+1}-x_{i}\right)\right)^{2}$ then,

$$
\nabla g(x)=\frac{2}{n^{2}} \sum_{i=1}^{n}\left(x_{n+1}-x_{i}\right)(-1, \ldots,-1,1)
$$

Hence,

$$
\begin{align*}
\|\nabla g(x)\| & =\frac{2}{n^{2}}\left|\sum_{i=1}^{n}\left(x_{i}-x_{n+1}\right)\right|(n+1)^{1 / 2} \tag{2.9}\\
& \leq \frac{2(n+1)^{1 / 2}}{n^{2}} \sum_{i=1}^{n}\left|x_{i}-x_{n+1}\right| \leq \frac{2(n+1)^{1 / 2}}{n}(b-a) .
\end{align*}
$$

By combining (2.8) and (2.9) we obtain

$$
\begin{aligned}
0 & \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x-F_{n}(t) \\
& \leq \frac{t \sqrt{2}(n+1)^{1 / 4}}{\sqrt{n}}\left[\int_{a}^{b}\left(f_{+}^{\prime}(x)\right)^{2} d x\right]^{1 / 2}
\end{aligned}
$$

and proof is completed.
The following corollaries are immediate consequence of Theorem 2.4.
Corollary 2.5. Under the assumptions of theorem 2.4 if $M:=\sup _{x \in[a, b]}\left|f_{+}^{\prime}(x)\right|$, then for all $t \in[0,1)$ and $n \geq 1$ we have the inequality

$$
0 \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x-F_{n}(t) \leq \frac{\sqrt{2}(n+1)^{1 / 4} M \sqrt{b-a}}{\sqrt{n}}
$$

In particular we obtain

$$
\lim _{n \rightarrow \infty} F_{n}(t)=\frac{1}{b-a} \int_{a}^{b} f(x) d x, \text { for all } t \in[0,1)
$$

Corollary 2.6. Under the assumptions of theorem 2.4 one has the following inequality

$$
\begin{aligned}
0 & \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x-J_{n}(t) \\
& \leq \frac{(n+1)^{1 / 4}}{\sqrt{2 n}}\left[\int_{a}^{b}\left(f_{+}^{\prime}(x)\right)^{2} d x\right]^{1 / 2}
\end{aligned}
$$

The following result also holds;

Theorem 2.7. Let $f: I \rightarrow \mathbb{R}$ be a convex function and $a, b \in I^{\circ}$ with $a<b$. Suppose that there exits a constant $K>0$ such that

$$
\left|f_{+}^{\prime}(x)-f_{+}^{\prime}(y)\right| \leq K|x-y|, \text { for all } x, y \in[a, b]
$$

Then we have the inequality

$$
t F_{n}(1)+(1-t) F_{n}(0)-F_{n}(t) \leq \frac{2 t(1-t)(n+1)^{1 / 2} K}{n}(b-a),
$$

for all $t \in[0,1]$ and $n \geq 1$.

Proof. By convexity of f for every $x_{1}, \ldots, x_{n+1} \in[a, b]$ and $t \in[0,1]$ we have

$$
\begin{align*}
& f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right)-f\left(\frac{x_{1}+\ldots+x_{n}}{n}\right) \\
& \geq(1-t) f_{+}^{\prime}\left(\frac{x_{1}+\ldots+x_{n}}{n}\right)\left(x_{n+1}-\frac{x_{1}+\ldots+x_{n}}{n}\right), \tag{2.10}
\end{align*}
$$

and

$$
\begin{align*}
& f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right)-f\left(x_{n+1}\right) \\
& \geq-t f_{+}^{\prime}\left(x_{n+1}\right)\left(x_{n+1}-\frac{x_{1}+\ldots+x_{n}}{n}\right) . \tag{2.11}
\end{align*}
$$

If we multiply the inequalities (2.10) and (2.11) by t and $1-t$, respectively and added the obtained results we obtain

$$
\begin{aligned}
& t f\left(\frac{x_{1}+\ldots+x_{n}}{n}\right)+(1-t) f\left(x_{n+1}\right) \\
& -f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right) \leq t(1-t) \\
& {\left[f_{+}^{\prime}\left(\frac{x_{1}+\ldots+x_{n}}{n}\right)-f_{+}^{\prime}\left(x_{n+1}\right)\right]\left(\frac{x_{1}+\ldots+x_{n}}{n}-x_{n+1}\right) .}
\end{aligned}
$$

Integrating on $[a, b]^{n+1}$ and using (9) implies that

$$
\begin{aligned}
& t F_{n}(1)+(1-t) F_{n}(0)-F_{n}(t) \\
& \leq t(1-t) \frac{1}{(b-a)^{n+1}} \int_{a}^{b} \ldots \int_{a}^{b}\left[f_{+}^{\prime}\left(\frac{x_{1}+\ldots+x_{n}}{n}\right)-f_{+}^{\prime}\left(x_{n+1}\right)\right] \\
& \times\left(\frac{x_{1}+\ldots+x_{n}}{n}-x_{n+1}\right) d x_{1} \ldots d x_{n+1} \\
& \leq \frac{t(1-t) K}{(b-a)^{n+1}} \int_{a}^{b} \ldots \int_{a}^{b}\left(\frac{x_{1}+\ldots+x_{n}}{n}-x_{n+1}\right)^{2} d x_{1} \ldots d x_{n+1} \\
& \leq \frac{2 t(1-t) K(n+1)^{1 / 2}}{n}(b-a) .
\end{aligned}
$$

This completes the proof.

Finally an upper bound for the difference $F_{n}(t)-H_{n}(t), n \geq 1, t \in[0,1]$, is as follows.

Theorem 2.8. Let $f: I \rightarrow \mathbb{R}$ be a convex function and $a, b \in I^{\circ}$ with $a<b$. Then, for all $t \in[0,1]$ and $n \geq 1$ we have the inequality

$$
\begin{aligned}
& 0 \leq F_{n}(t)-H_{n}(t) \\
& \leq \frac{(1-t)(b-a)}{2}\left[\frac { 1 } { (b - a) ^ { n + 1 } } \int _ { a } ^ { b } \ldots \int _ { a } ^ { b } \left(f _ { + } ^ { \prime } \left(t \frac{x_{1}+\ldots+x_{n}}{n}\right.\right.\right. \\
& \left.\left.\left.+(1-t) x_{n+1}\right)\right)^{2} d x_{1} \ldots d x_{n+1}\right]^{1 / 2} .
\end{aligned}
$$

Proof. By convexity of f for every $x_{1}, \ldots, x_{n+1} \in[a, b]$ and $t \in[0,1]$ we have

$$
\begin{aligned}
& f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) \frac{a+b}{2}\right)-f\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right) \\
& \geq(1-t) f_{+}^{\prime}\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right)\left(\frac{a+b}{2}-x_{n+1}\right)
\end{aligned}
$$

Integrating on $[a, b]^{n+1}$ and using Hölder's inequality implies that

$$
\begin{aligned}
& 0 \leq F_{n}(t)-H_{n}(t) \\
& \leq \frac{1-t}{(b-a)^{n+1}} \int_{a}^{b} \ldots \int_{a}^{b} f_{+}^{\prime}\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right) \\
& \left(x_{n+1}-\frac{a+b}{2}\right) d x_{1} \ldots d x_{n+1} \leq \frac{1-t}{(b-a)^{n+1}}\left[\int_{a}^{b} \ldots \int_{a}^{b}\right. \\
& \left.\left(f_{+}^{\prime}\left(t \frac{x_{1}+\ldots+x_{n}}{n}+(1-t) x_{n+1}\right)\right)^{2} d x_{1} \ldots d x_{n+1}\right]^{1 / 2} \\
& {\left[\int_{a}^{b} \ldots \int_{a}^{b}\left(x_{n+1}-\frac{a+b}{2}\right)^{2} d x_{1} \ldots d x_{n+1}\right]^{1 / 2}} \\
& =\frac{(1-t)(b-a)}{2}\left[\frac { 1 } { (b - a) ^ { n + 1 } } \int _ { a } ^ { b } \ldots \int _ { a } ^ { b } \left(f _ { + } ^ { \prime } \left(t \frac{x_{1}+\ldots+x_{n}}{n}\right.\right.\right. \\
& \left.\left.\left.+(1-t) x_{n+1}\right)\right)^{2} d x_{1} \ldots d x_{n+1}\right]^{1 / 2} .
\end{aligned}
$$

This completes the proof.

Corollary 2.9. Under the assumptions as in theorem (2.8) if $K:=\sup _{x \in[a, b]}\left|f_{+}^{\prime}(x)\right|$ one has

$$
0 \leq F_{n}(t)-H_{n}(t) \leq \frac{(1-t) K}{2}(b-a)
$$

for every $n \geq 1, t \in[0,1]$.
In particular we have

$$
0 \leq F(t)-H(t) \leq \frac{(1-t) K}{2}(b-a)
$$

The following example gives a refinement and upper bound related to inequality (1.1).

Example 2.10. Consider the convex function $f: I \rightarrow \mathbb{R}, f(x):=e^{x}$, for $n=1$ and for every $t \in[0,1]$, we have

$$
F_{1}(t)=\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} e^{t x+(1-t) y} d x d y
$$

where $a, b \in I$, with $a<b$. If $t=0$ or $t=1$, we see that

$$
F_{1}(0)=F_{1}(1)=\frac{1}{b-a} \int_{a}^{b} e^{x} d x=\frac{e^{b}-e^{a}}{b-a} .
$$

Thus inequalities in (2.7) are valid. It is easy to see that for every $t \in(0,1)$ we have

$$
F_{1}(t)=\frac{1}{(b-a)^{2}(1-t) t}\left(e^{t b}-e^{t a}\right)\left(e^{(1-t) b}-e^{(1-t) a}\right)
$$

From equality

$$
\frac{a+b}{2}=\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}(t x+(1-t) y) d x d y
$$

by jensen's type integral inequality we get

$$
\begin{aligned}
f\left(\frac{a+b}{2}\right) & =f\left(\frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b}(t x+(1-t) y) d x d y\right) \\
& \leq \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f(t x+(1-t) y) d x d y \\
& =F_{1}(t)
\end{aligned}
$$

Also from the inequalities (2.3), (1.1) we note that

$$
F_{1}(t) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

therefore the inequality (2.7) holds. Now, simple computation gives an upper bound for the difference $\frac{1}{b-a} \int_{a}^{b} f(x) d x-F_{1}(t)$ for all $t \in[0,1]$. Using Theorem 2.4 implies that

$$
\begin{aligned}
0 & \leq \frac{1}{b-a} \int_{a}^{b} e^{x} d x-F_{1}(t) \\
& \leq t \sqrt{2}(2)^{1 / 4}\left[\int_{a}^{b} e^{2 x} d x\right]^{1 / 2} \\
& =t(2)^{1 / 4}\left(e^{2 b}-e^{2 a}\right)^{1 / 2} .
\end{aligned}
$$

Conclusion

In this paper, we have given a sequence of mappings associated to the mapping F. This sequence gives us some new refinements and bounds related to well known Hermite-Hadamard inequality.

References

[1] A. Barani and S. Barani, Hermite-Hadamard inequalities for functions when a power of the absolute value of the first derivative is P-convex, Bull. Aust. Math. Soc, 86 : 126-134, 2012.
[2] S. Banić, Mapping connected with Hermite-Hadamard inequalities for superquadratic functions, J. Math. Inequal, 3: 557-589, 2009.
[3] A. Barani, Hermite-Hadamard and Ostrowski type inequalities on hemispheres, Mediterr. J. Math, 13 (6) : 4253-426, 2016.
[4] C. Conde, A version of the Hermite-Hadamard inequality in a nonpositive curvature space, Banach J. Math. Anal, 6:159-167, 2012.
[5] S.S. Dragomir, A mapping in connection to Hadamard's inequalities, An. Öster. Akad. Wiss. Math. Natur, 128: 17-20, 1991.
[6] S.S. Dragomir, Two mappings on connection to Hadamard's inequality, J. Math. Anal. Appl, 167: 49-56, 1992.
[7] S.S. Dragomir, On Hadamard's inequalities for convex functions, Mat. Balkanica, 6: 215-222, 1992.
[8] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and applications, (RGMIA Monographs http:// rgmia.vu.edu.au/ monographs/ hermite hadamard.html, Victoria University, 2000.
[9] S.S. Dragomir, A sequence of mappings associated with the Hermite-Hadamard inequalities and applications, Applications of Mathematics, 49: 123-140, 2004.
[10] S.S. Dragomir, and I. Gomm, Bounds for two mapping associated to the Hermite-Hadamard inequality, AJMAA, 8: 1-9, 2011.
[11] S.S. Dragomir, and I. Gomm, Some new bounds for two mapping related to the Hermite-Hadamard inequality for convex functions, Numer. Algeb. Cont. Optim, 2: 271-278, 2012.
[12] I. İscan New general integral inequalities for quasi geometrically convex functions via fractional integrals, J. Ineq. Appl, 2013 (491): 1-15, 2013.
[13] M.S. Moslehian, Matrix Hermite-Hadamard type inequalities, Houst. J. Math, 39: 177-189, 2013.
[14] C.P. Niculescu, The Hermite-Hadamard inequality for log-convex functions, Nonlinear Analysis, 75 : 662-669, 2012.
[15] K.L. Tesing, S.R. Hwang, and S.S. Dragomir, New Hermite-Hadamard-type inequalities for convex functions (II), Comput. Math. Appl, 62: 29-38, 2011.
(Nozar Safaei) Department of Mathematics, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran.

Email address: nouzarsafaei@yahoo.com

