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Abstract. In this paper we introduced direct product of intuitionistic fuzzy multigroups
of G under norms(IFMSN(G)) and we prove that it will be also IFMSN(G). Next we
shall study some important properties and theorems for them. On the other hand we shall
give the definition of the identity element, strong upper- lower and weak upper- lowerof
them and study the main theorem for this. We shall also give new results on this subject.
Also we define the concepts of conjugate and commutative of IFMSN(G) and investigate
them under direct product. Finally, we organize them under group homomorphisms and we
prove that the image and preimage of direct product of IFMSN(G) will be also IFMSN(G).
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1. Introduction and Background
A multiset (mset), which is a generalization of classical or standard (Cantorian) set, is a

”set” where an element can occur more than once. The term multiset (mset in short) as Knuth
[4] notes, was first suggested by De Bruijn [3] in a private communication to him. The concept
of fuzzy sets was proposed by Zaded [28] to capture uncertainty in a collection, which was
neglected in crisp set. Fuzzy set theory has grown stupendously over the years giving birth to
fuzzy groups introduced in [24]. Recently, Shinoj et al. [25] introduced a non-classical group
called fuzzy multigroup, which generalized fuzzy group. In 1983, Atanassov [1, 2] introduced
the concept of intuitionistic fuzzy sets. The concepts of intuitionistic fuzzy multiset and
intuitionistic fuzzy multigroup are introduced in [26, 27], which have applications in medical
diagnosis and robotics. The First author by using norms, investigated some properties of
fuzzy algebraic structures [5-23] specially in [5-9] initiated the study of fuzzy multigroups,
anti fuzzy multigroupsand and intuitionistic fuzzy multigroups under norms and investigated
some properties of them.In this study, we introduce the concept of direct product, conjugate
and commutative of IFMSN(G) and we obtain some results about them. Also we discussed
few results of them under group homomorphisms.

2. Preliminaries
This section contains some basic definitions and preliminary results which will be needed

in the sequel. For details we refer to [5-9].
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Definition 2.1. Let G be an arbitrary group with a multiplicative binary operation and
identity e. A fuzzy subset of G, we mean a function from G into [0, 1]. The set of all fuzzy
subsets of G is called the [0, 1]-power set of G and is denoted [0, 1]G.

Definition 2.2. Let X be a set. A fuzzy multiset A of X is characterized by a count
membership function

CMA : X → [0, 1]

of which the value is a multiset of the unit interval I = [0, 1]. That is,

CMA(x) = {µ1, µ2, ..., µn, ...}∀x ∈ X,

where µ1, µ2, ..., µn, ... ∈ [0, 1] such that

(µ1 ≥ µ2 ≥ ... ≥ µn ≥ ...).

Whenever the fuzzy multiset is finite, we write

CMA(x) = {µ1, µ2, ..., µn},

where µ1, µ2, ..., µn ∈ [0, 1] such that

(µ1 ≥ µ2 ≥ ... ≥ µn),

or simply
CMA(x) = {µi},

for µi ∈ [0, 1] and i = 1, 2, ..., n.
Now, a fuzzy multiset A is given as
A = {CMA(x)

x
: x ∈ X} or A = {(CMA(x), x) : x ∈ X}.

The set of all fuzzy multisets is depicted by FMS(X).

Example 2.3. Assume that X = {a, b, c} is a set. Then for CMA(a) = {1, 0.5, 0.4} and
CMA(b) = {0.9, 0.6} and CMA(c) = {0} we get that A is a fuzzy multiset of X written as

A = {1, 0.5, 0.4
a

,
0.9, 0.6

b
}.

Definition 2.4. Let A,B ∈ FMS(X). Then A is called a fuzzy submultiset of B written as
A ⊆ B if CMA(x) ≤ CMB(x) for all x ∈ X. Also, if A ⊆ B and A ̸= B, then A is called a
proper fuzzy submultiset of B and denoted as A ⊂ B.

Definition 2.5. A t-norm T is a function T : [0, 1]× [0, 1] → [0, 1] having the following four
properties:
(T1) T (x, 1) = x (neutral element),
(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity),
(T3) T (x, y) = T (y, x) (commutativity),
(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),
for all x, y, z ∈ [0, 1].
We say that T be idempotent if T (x, x) = x for all x ∈ [0, 1].

It is clear that if x1 ≥ x2 and y1 ≥ y2, then T (x1, y1) ≥ T (x2, y2).
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Example 2.6. (1) Standard intersection t-norm Tm(x, y) = min{x, y}.
(2) Bounded sum t-norm Tb(x, y) = max{0, x+ y − 1}.
(3) algebraic product t-norm Tp(x, y) = xy.
(4) Drastic T -norm

TD(x, y) =

 y if x = 1
x if y = 1
0 otherwise.

(5) Nilpotent minimum t-norm

TnM (x, y) =

{
min{x, y} if x+ y > 1

0 otherwise.

(6) Hamacher product t-norm

TH0(x, y) =

{
0 if x = y = 0

xy
x+y−xy otherwise.

The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise
largest t-norm: TD(x, y) ≤ T (x, y) ≤ Tmin(x, y) for all x, y ∈ [0, 1].

Definition 2.7. ([6]) A t-conorm C is a function C : [0, 1]×[0, 1] → [0, 1] having the following
four properties:
(C1) C(x, 0) = x
(C2) C(x, y) ≤ C(x, z) if y ≤ z
(C3) C(x, y) = C(y, x)
(C4) C(x,C(y, z)) = C(C(x, y), z) ,
for all x, y, z ∈ [0, 1].

We say that C be idempotent if C(x, x) = x for all x ∈ [0, 1].

Example 2.8. (1) Standard union t-conorm Cm(x, y) = max{x, y}.
(2) Bounded sum t-conorm Cb(x, y) = min{1, x+ y}.
(3) Algebraic sum t-conorm Cp(x, y) = x+ y − xy.
(4) Drastic T -conorm

CD(x, y) =

 y if x = 0
x if y = 0
1 otherwise,

dual to the drastic t-norm.
(5) Nilpotent maximum t-conorm , dual to the nilpotent minimum t-norm:

CnM (x, y) =

{
max{x, y} if x+ y < 1

1 otherwise.
(6) Einstein sum (compare the velocity-addition formula under special relativity) CH2(x, y) =
x+ y

1 + xy
is a dual to one of the Hamacher t-norms. Note that all t-conorms are bounded by

the maximum and the drastic t-conorm: Cmax(x, y) ≤ C(x, y) ≤ CD(x, y) for any t-conorm
C and all x, y ∈ [0, 1].

Recall that t-conorm C is idempotent if for all x ∈ [0, 1], we have that C(x, x) = x.
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Lemma 2.9. Let T be a t-norm and C be a t-conorm. Then
T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

and
C(C(x, y), C(w, z)) = C(C(x,w), C(y, z)),

for all x, y, w, z ∈ [0, 1].

Definition 2.10. Let A = (CMA, CNA) ∈ IFMS(G). Then A is said to be an intuitionistic
fuzzy multigroup of G under norms( t-norm T and t-conorm C) if it satisfies the following
conditions:
(1) CMA(xy) ≥ T (CMA(x), CMA(y)),
(2) CMA(x

−1) ≥ CMA(x),
(3) CNA(xy) ≤ C(CNA(x), CNA(y)),
(4) CNA(x

−1) ≤ CNA(x),
for all x, y ∈ G.
The set of all intuitionistic fuzzy multigroups of G under norms( t-norm T and t-conorm C)
is depicted by IFMSN(G).

Theorem 2.11. Let A = (CMA, CNA) ∈ IFMSN(G) and T,C be idempotent. Then
(1) A(e) ⊇ A(x) for all x ∈ G.
(2) A(xn) ⊇ A(x) for all x ∈ G and n ≥ 1.
(3) A(x) = A(x−1) for all x ∈ G.

3. Direct Product of IFMSN(G)

Definition 3.1. Let A = (CMA, CNA) ∈ IFMSN(G) and B = (CMB, CNB) ∈ IFMSN(H).
The direct product of A and B, denoted by
A×B = (CMA, CNA)× (CMB, CNB) = (CMA×CMB, CNA×CNB) = (CMA×B, CNA×B),

is characterized by as functions
CMA×B : G×H → [0, 1]

and
CNA×B : G×H → [0, 1]

such that
CMA×B(x, y) = T (CMA(x), CMB(y))

and
CNA×B(x, y) = C(CMA(x), CMB(y))

for all x ∈ G and y ∈ H.

Example 3.2. Let G = {1, x} be a group, where x2 = 1 and H = {e, a, b, c} be a Klein 4-
group, where a2 = b2 = c2 = e. Let CMA = {0.5, 0.4

1
,
0.6, 0.3

x
} and CNA = {0.4, 0.2, 0.1

1
,
0.2, 0.1

x
}

and
CMB = {0.6, 0.25

e
,
0.35, 0.25

a
,
0.50, 0.40

b
,
0.4, 0.3

c
}

and
CNB = {0.2, 0.15

e
,
0.5, 0.45, 0.25

a
,
0.20, 0.15

b
,
0.25, 0.15

c
}



DIRECT PRODUCT OF IFMSN(G) 65

be fuzzy multigroups of G and H. Let
G×H = {(1, e), (1, a), (1, b), (1, c), (x, e), (x, a), (x, b), (x, c)}

be a a group from the classical sense. Define

A×B = {0.2, 0.1
(1, e)

,
0.55, 0.35

(1, a)
,
0.45, 0.35

(1, b)
,
0.6, 0.2

(1, c)
,
0.4, 0.3

(x, e)
,
0.25, 0.15

(x, a)
,
0.7, 0.3

(x, b)
,
0.7, 0.6

(x, c)
}.

Let T (x, y) = Tp(x, y) = xy and C(x, y) = Cp(x, y) = x+ y − xy for all x, y ∈ [0, 1].
Then A = (CMA, CNA) ∈ IFMSN(G) and B = (CMB, CNB) ∈ IFMSN(H) thus A×B ∈
IFMSN(G×H).

Proposition 3.3. Let Ai = (CMAi , CNAi) ∈ IFMSN(Gi) for i = 1, 2. Then A1 × A2 ∈
IFMSN(G1 ×G2).

Proof. Let (a1, b1), (a2, b2) ∈ G1 ×G2. Then
(1)

(CMA1×A2)((a1, b1)(a2, b2)) = (CMA1×A2)(a1a2, b1b2)

= T (CMA1(a1a2), CMA2(b1b2))

≥ T (T (CMA1(a1), CMA1(a2)), T (CMA2(b1), CMA2(b2)))

= T (T (CMA1(a1), CMA2(b1), T (CMA1(a2), CMA2(b2)) (Lemma 2.9)
= T ((CMA1×A2)(a1, b1), (CMA1×A2)(a2, b2))

thus
(CMA1×A2)((a1, b1)(a2, b2)) ≥ T ((CMA1×A2)(a1, b1), (CMA1×A2)(a2, b2)).

(2)

(CNA1×A2)((a1, b1)(a2, b2)) = (CNA1×A2)(a1a2, b1b2)

= C(CNA1(a1a2), CNA2(b1b2))

≤ C(C(CNA1(a1), CNA1(a2)), C(CNA2(b1), CNA2(b2)))

= C(C(CNA1(a1), CNA2(b1), C(CNA1(a2), CNA2(b2)) (Lemma 2.9)
= C((CNA1×A2)(a1, b1), (CNA1×A2)(a2, b2))

so
(CNA1×A2)((a1, b1)(a2, b2)) ≤ C((CNA1×A2)(a1, b1), (CNA1×A2)(a2, b2)).

Let (a, b) ∈ G1 ×G2. Then
(3)

(CMA1×A2)(a, b)
−1 = (CMA1×A2)(a

−1, b−1)

= T (CMA1(a
−1), CMA2(b

−1))

≥ T (CMA1(a), CMA2(b))

then
(CMA1×A2)(a, b)

−1 ≥ T (CMA1(a), CMA2(b)).

(4)
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(CNA1×A2)(a, b)
−1 = (CNA1×A2)(a

−1, b−1)

= C(CNA1(a
−1), CNA2(b

−1))

≤ C(CNA1(a), CNA2(b))

thus
(CNA1×A2)(a, b)

−1 ≤ C(CNA1(a), CNA2(b)).

Therefore (1)-(4) give us that A1 ×A2 = (CMA1×A2 , CNA1×A2) ∈ IFMSN(G1 ×G2). □
Corollary 3.4. Let Ai = (CMAi , CNAi) ∈ IFMSN(Gi) for i = 1, 2, ..., n. Then

A1 ×A2 × ...×An ∈ IFMSN(G1 ×G2 × ...×Gn).

Definition 3.5. Let A = (CMA, CNA) ∈ IFMSN(G) and α, β ∈ [0, 1]. Then we define
(1) A⋆ = {x ∈ G | A(x) = A(eG)} where eG is the identity element of G.

(2) A
[β]
[α] = {x ∈ G | A(x) ⊇ (α, β)} is called strong upper- lower (α, β)-cut of A.

(3) A
(β)
(α) = {x ∈ G | A(x) ⊃ (α, β)} is called weak upper- lower (α, β)-cut of A.

Proposition 3.6. Let A = (CMA, CNA) ∈ IFMSN(G) and B = (CMB, CNB) ∈ IFMSN(H)
such that T,C be idempotent norms. Then for all α, β ∈ [0, 1] the following assertions hold.
(1) (A×B)⋆ = A⋆ ×B⋆.

(2) (A×B)
[β]
[α] = A

[β]
[α] ×B

[β]
[α].

(3) (A×B)
(β)
(α) = A

(β)
(α) ×B

(β)
(α).

Proof. (1) Let

(A×B)⋆ = {(x, y) ∈ G×H | (A×B)(x, y) = (A×B)(eG, eH)}
= {(x, y) ∈ G×H | (CMA×B, CNA×B)(x, y) = (CMA×B, CNA×B)(eG, eH)}
= {(x, y) ∈ G×H | CMA×B(x, y) = CMA×B(eG, eH), CNA×B(x, y) = CNA×B(eG, eH)}

so
(x, y) ∈ (A×B)⋆

if and only if
CMA×B(x, y) = CMA×B(eG, eH)

and
CNA×B(x, y) = CNA×B(eG, eH)

if and only if
T (CMA(x), CMB(y)) = T (CMA(eG), CMB(eH))

and
C(CNA(x), CNB(y)) = C(CNA(eG), CNB(eH))

if and only if
CMA(x) = CMA(eG)

and
CMB(y) = CMB(eH)

if and only if
x ∈ A⋆
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and
y ∈ B⋆

if and only if
(x, y) ∈ A⋆ ×B⋆

thus
(A×B)⋆ = A⋆ ×B⋆.

(2) Let

(A×B)
[β]
[α] = {(x, y) ∈ G×H | (A×B)(x, y) ⊇ (α, β)}

= {(x, y) ∈ G×H | (CMA×B, CNA×B)(x, y) ⊇ (α, β)}
= {(x, y) ∈ G×H | CMA×B(x, y) ≥ α,CNA×B(x, y) ≤ β}.

Now
(x, y) ∈ (A×B)

[β]
[α] ⇐⇒ CMA×B(x, y) ≥ α and CNA×B(x, y) ≤ β

⇐⇒ T (CMA(x), CMB(y)) ≥ α = T (α, α) and C(CNA(x), CNB(y)) ≤ β = C(β, β)

⇐⇒ CMA(x) ≥ α and CMB(y) ≥ α and CNA(x) ≤ β and CNB(y) ≤ β

⇐⇒ x ∈ A
[β]
[α] and y ∈ B

[β]
[α] ⇐⇒ (x, y) ∈ A

[β]
[α] ×B

[β]
[α]

thus
(A×B)

[β]
[α] = A

[β]
[α] ×B

[β]
[α].

(3) As

(A×B)
(β)
(α) = {(x, y) ∈ G×H | (A×B)(x, y) ⊃ (α, β)}

= {(x, y) ∈ G×H | (CMA×B, CNA×B)(x, y) ⊃ (α, β)}
= {(x, y) ∈ G×H | CMA×B(x, y) > α,CNA×B(x, y) < β}

so
(x, y) ∈ (A×B)

(β)
(α) ⇐⇒ CMA×B(x, y) > α and CNA×B(x, y) < β

⇐⇒ T (CMA(x), CMB(y)) > α = T (α, α) and C(CNA(x), CNB(y)) < β = C(β, β)

⇐⇒ CMA(x) > α and CMB(y) < α and CNA(x) < β and CNB(y) < β

⇐⇒ x ∈ A
(β)
(α) and y ∈ B

(β)
(α) ⇐⇒ (x, y) ∈ A

(β)
(α) ×B

(β)
(α)

thus
(A×B)

(β)
(α) = A

(β)
(α) ×B

(β)
(α).

□
Proposition 3.7. Let A = (CMA, CNA) ∈ IFMSN(G) and B = (CMB, CNB) ∈ IFMSN(H)
such that T,C be idempotent norms. Then for all (x, y) ∈ G × H the following assertions
hold.
(1) (A×B)(eG, eH) ⊇ (A×B)(x, y).
(2) (A×B)((x, y)n) ⊇ (A×B)(x, y).
(3) (A×B)(x, y) = (A×B)(x−1, y−1).

Proof. As Proposition 3.3 we get that A × B ∈ IFMSN(G ×H) so Theorem 2.11 gives us
that assertions are hold. □
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Proposition 3.8. Let A = (CMA, CNA) ∈ IFMSN(G) and B = (CMB, CNB) ∈ IFMSN(H)
such that T,C be idempotent norms. Then for all α, β ∈ [0, 1] the following assertions hold.
(1) (A×B)⋆ is a subgroup of G×H.

(2) (A×B)
[β]
[α] is a subgroup of G×H.

(3) (A×B)
(β)
(α) is a subgroup of G×H.

Proof. (1) Let (x1, y1), (x2, y2) ∈ (A× B)⋆ and we must prove that (x1, y1)(x2, y2)
−1 ∈ (A×

B)⋆. Because (x1, y1), (x2, y2) ∈ (A×B)⋆ then
CMA×B(x1, y1) = CMA×B(x2, y2) = CMA×B(eG, eH)

and
CNA×B(x1, y1) = CNA×B(x2, y2) = CNA×B(eG, eH)

which mean that
T (CMA(x1), CMB(y1)) = T (CMA(x2), CMB(y2)) = T (CMA(eG), CMB(eH))

and
C(CNA(x1), CNB(y1)) = C(CNA(x2), CNB(y2)) = C(CNA(eG), CNB(eH))

so CMA(x1) = CMA(x2) = CMA(eG) and CMA(y1) = CMA(y2) = CMA(eH). Then

CMA×B((x1, y1)(x2, y2)
−1) = CMA×B((x1, y1)(x

−1
2 , y−1

2 ))

= CMA×B(x1x
−1
2 , y1y

−1
2 )

= T (CMA(x1x
−1
2 ), CMB(y1y

−1
2 ))

≥ T (T (CMA(x1), CMA(x
−1
2 )), T (CMB(y1), CMB(y

−1
2 )))

≥ T (T (CMA(x1), CMA(x2)), T (CMB(y1), CMB(y2)))

= T (T (CMA(eG), CMA(eG)), T (CMB(eH), CMB(eH)))

= T (CMA(eG), CMB(eH)) = CMA×B(eG, eH)

≥ CMA×B((x1, y1)(x2, y2)
−1) (Proposition 3.7 part(1))

thus
CMA×B((x1, y1)(x2, y2)

−1) = CMA×B(eG, eH).

Also
CNA×B((x1, y1)(x2, y2)

−1) = CNA×B((x1, y1)(x
−1
2 , y−1

2 ))

= CNA×B(x1x
−1
2 , y1y

−1
2 )

= C(CNA(x1x
−1
2 ), CNB(y1y

−1
2 ))

≤ C(C(CNA(x1), CNA(x
−1
2 )), C(CNB(y1), CNB(y

−1
2 )))

≤ C(C(CNA(x1), CNA(x2)), C(CNB(y1), CNB(y2)))

= C(C(CMA(eG), CNA(eG)), C(CNB(eH), CNB(eH)))

= C(CNA(eG), CNB(eH)) = CNA×B(eG, eH)

≤ CNA×B((x1, y1)(x2, y2)
−1) (Proposition 3.7 part(1))

then
CNA×B((x1, y1)(x2, y2)

−1) = CNA×B(eG, eH).
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Therefore
(A×B)⋆((x1, y1)(x2, y2)

−1) = (CMA×B((x1, y1)(x2, y2)
−1), CNA×B((x1, y1)(x2, y2)

−1))

= (CMA×B(eG, eH), CNA×B(eG, eH))

= (A×B)⋆(eG, eH)

so (x1, y1)(x2, y2)
−1 ∈ (A×B)⋆ thus (A×B)⋆ is a subgroup of G×H.

(2) Let (x1, y1), (x2, y2) ∈ (A × B)
[β]
[α] and we show that (x1, y1)(x2, y2)

−1 ∈ (A × B)
[β]
[α]. As

(x1, y1), (x2, y2) ∈ (A×B)
[β]
[α] so CMA×B(x1, y1) ≥ α and CMA×B(x2, y2) ≥ α. Now

CMA×B((x1, y1)(x2, y2)
−1) = CMA×B((x1, y1)(x

−1
2 , y−1

2 ))

= CMA×B(x1x
−1
2 , y1y

−1
2 )

= T (CMA(x1x
−1
2 ), CMB(y1y

−1
2 ))

≥ T (T (CMA(x1), CMA(x
−1
2 )), T (CMB(y1), CMB(y

−1
2 )))

≥ T (T (CMA(x1), CMA(x2)), T (CMB(y1), CMB(y2)))

= T (T (CMA(x1), CMB(y1)), T (CMA(x2), CMB(y2))) (Lemma 2.9)
= T (CMA×B(x1, y1), CMA×B(x2, y2))

≥ T (α, α) = α

thus
CMA×B((x1, y1)(x2, y2)

−1) ≥ α.

Also since CNA×B(x1, y1) ≤ β and CNA×B(x2, y2) ≤ β so

CNA×B((x1, y1)(x2, y2)
−1) = CNA×B((x1, y1)(x

−1
2 , y−1

2 ))

= CNA×B(x1x
−1
2 , y1y

−1
2 )

= C(CNA(x1x
−1
2 ), CNB(y1y

−1
2 ))

≤ C(C(CNA(x1), CNA(x
−1
2 )), C(CNB(y1), CNB(y

−1
2 )))

≤ C(C(CNA(x1), CNA(x2)), C(CNB(y1), CNB(y2)))

= C(C(CNA(x1), CNB(y1)), C(CNA(x2), CNB(y2))) (Lemma 2.9)
= C(CNA×B(x1, y1), CNA×B(x2, y2))

≤ C(β, β) = β

then
CNA×B((x1, y1)(x2, y2)

−1) ≤ β.

Therefore
(A×B)

[β]
[α]((x1, y1)(x2, y2)

−1) = (CMA×B((x1, y1)(x2, y2)
−1), CNA×B((x1, y1)(x2, y2)

−1)) ⊇ (α, β)

thus (x1, y1)(x2, y2)
−1 ∈ (A×B)

[β]
[α]. Then (A×B)

[β]
[α] is a subgroup of G×H.

(3) The proof is similar to (2). □

Proposition 3.9. Let A = (CMA, CNA) ∈ IFMSN(G) and B = (CMB, CNB) ∈ IFMSN(H).
If A×B ∈ IFMSN(G×H), then at least one of the following statements hold.
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(1) B(eH) ⊇ A(x) for all x ∈ G.
(2) A(eG) ⊇ B(y) for all y ∈ G.

Proof. By contrapositive, suppose that none of the statements holds. Then suppose we can
find a ∈ G and b ∈ H such that A(a) ⊃ B(eH) and B(b) ⊃ A(eG). Thus

A(a) = (CMA(a), CNA(a)) ⊃ B(eH) = (CMB(eH), CNB(eH))

and
B(b) = (CMB(b), CNB(b)) ⊃ A(eG) = (CMA(eG), CNA(eG)).

Now

CMA×B(a, b) = T (CMA(a), CMB(b))

> T (CMB(eH), CMA(eG))

= T (CMA(eG), CMB(eH))

= CMA×B(eG, eH)

and

CNA×B(a, b) = C(CNA(a), CNB(b))

< C(CNB(eH), CNA(eG))

= C(CNA(eG), CNB(eH))

= CNA×B(eG, eH)

thus CMA×B(a, b) > CMA×B(eG, eH) and CNA×B(a, b) < CNA×B(eG, eH). Therefore

(A×B)(a, b) = (CMA×B(a, b), CNA×B(a, b))

⊃ (CMA×B(eG, eH), CNA×B(eG, eH))

= (A×B)(eG, eH))

this is contradiction with Proposition 3.7 part (1). Then at least one of the statements
hold. □
Proposition 3.10. Let A = (CMA, CNA) ∈ IFMS(G) and B = (CMB, CNB) ∈ IFMS(H).
Let A×B ∈ IFMSN(G×H) and A(x) ⊆ B(eH) for all x ∈ G. Then A ∈ IFMSN(G).

Proof. Since A(x) = (CMA(x), CNA(x)) ⊆ B(eH) = (CMB(eH), CNB(eH)) for all x ∈ G
then A(y) = (CMA(y), CNA(y)) ⊆ B(eH) and A(xy) = (CMA(xy), CNA(xy)) ⊆ B(eH) =
B(eHeH) = (CMB(eHeH), CNB(eHeH)) for all y ∈ G. Now

CMA(xy) = T (CMA(xy), CMB(eHeH))

= CMA×B(xy, eHeH)

= CMA×B((x, eH)(y, eH))

≥ T (CMA×B(x, eH), CMA×B(y, eH))

= T (T (CMA(x), CMB(eH)), T (CMA(y), CMB(eH)))

= T (CMA(x), CMA(y))
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and so
CMA(xy) ≥ T (CMA(x), CMA(y)). (1)

Also

CNA(xy) = C(CNA(xy), CNB(eHeH))

= CNA×B(xy, eHeH)

= CNA×B((x, eH)(y, eH))

≤ C(CNA×B(x, eH), CNA×B(y, eH))

= C(C(CNA(x), CNB(eH)), C(CNA(y), CNB(eH)))

= C(CNA(x), CNA(y))

then
CNA(xy) ≤ C(CNA(x), CNA(y)). (2)

Further since A(x) ⊆ B(eH) for all x ∈ G so A(x−1) ⊆ B(eH). Thus

CMA(x
−1) = T (CMA(x

−1), CMA(eH))

= T (CMA(x
−1), CMA(e

−1
H ))

= CMA×B((x, eH)−1)

≥ CMA×B(x, eH)

= T (CMA(x), CMA(eH))

= CMA(x)

and then
CMA(x

−1) ≥ CMA(x). (3)

And
CNA(x

−1) = C(CNA(x
−1), CNA(eH))

= C(CNA(x
−1), CNA(e

−1
H ))

= CNA×B((x, eH)−1)

≤ CNA×B(x, eH)

= C(CNA(x), CNA(eH))

= CNA(x)

thus
CNA(x

−1) ≤ CNA(x). (4)

Therefore (1)-(4) give us that A = (CMA, CNA) ∈ IFMSN(G). □
Proposition 3.11. Let A = (CMA, CNA) ∈ IFMS(G) and B = (CMB, CNB) ∈ IFMS(H).
Let A×B ∈ IFMSN(G×H) and B(x) ⊆ A(eG) for all x ∈ H. Then B ∈ IFMSN(H).

Proof. The proof is similar to Proposition 3.10. □
Corollary 3.12. Let A = (CMA, CNA) ∈ IFMS(G) and B = (CMB, CNB) ∈ IFMS(H)
such that A×B ∈ IFMSN(G×H). Then either A ∈ IFMSN(G) or B ∈ IFMSN(H).
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Proof. Using Proposition 3.9 we get that B(eH) ⊇ A(x) for all x ∈ G or A(eG) ⊇ B(y)
for all y ∈ G. Then from Proposition 3.10 and Proposition 3.11 we will have that either
A ∈ IFMSN(G) or B ∈ IFMSN(H). □

Definition 3.13. Let A = (CMA, CNA) ∈ IFMS(X) and C = (CMC , CNC) ∈ IFMS(X).
(1) We say A is conjugate to B if A(x) = B(yxy−1) for all x, y ∈ X.
(2) We say A is commutative if A(xy) = A(yx) for all x, y ∈ X.

Proposition 3.14. Let A = (CMA, CNA) ∈ IFMSN(G) and C = (CMC , CNC) ∈ IFMSN(G)
and B = (CMB, CNB) ∈ IFMSN(H) and D = (CMD, CND) ∈ IFMSN(H). If A is con-
jugate to B and C is conjugate to D, then A× C is conjugate to B ×D.

Proof. As A is conjugate to B so A(x) = B(kxk−1) and as C is conjugate to D so C(y) =
D(hyh−1) for all x, y ∈ G and k, h ∈ H. Thus

A(x) = (CMA(x), CNA(x)) = B(kxk−1) = (CMB(kxk
−1), CNB(kxk

−1))

and
C(y) = (CMC(y), CNC(y)) = D(hyh−1) = (CMD(hyh

−1), CND(hyh
−1)).

CMA×C(x, y) = T (CMA(x), CMC(y))

= T (CMB(kxk
−1), CMD(hyh

−1))

= CMB×D(kxk
−1, hyh−1)

= CMB×D((k, h)(x, y)(k
−1, h−1))

= CMB×D((k, h)(x, y)(k, h)
−1)

and thus
CMA×C(x, y) = CMB×D((k, h)(x, y)(k, h)

−1).

Also
CNA×C(x, y) = C(CNA(x), CNC(y))

= C(CNB(kxk
−1), CND(hyh

−1))

= CNB×D(kxk
−1, hyh−1)

= CNB×D((k, h)(x, y)(k
−1, h−1))

= CNB×D((k, h)(x, y)(k, h)
−1)

hence
CNA×C(x, y) = CNB×D((k, h)(x, y)(k, h)

−1).

Therefore
(A× C)(x, y) = (CMA×C(x, y), CNA×C(x, y))

= (CMB×D((k, h)(x, y)(k, h)
−1), CNB×D((k, h)(x, y)(k, h)

−1))

= (B ×D)((k, h)(x, y)(k, h)−1)

then (A × C)(x, y) = (B × D)((k, h)(x, y)(k, h)−1) and thus A × C will be conjugate to
B ×D. □
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Proposition 3.15. Let A = (CMA, CNA) ∈ IFMSN(G) and B = (CMB, CNB) ∈ IFMSN(H).
Then A and B are commutative if and only if A×B is a commutative.

Proof. Let x1, y1 ∈ G and x2, y2 ∈ H such that x = (x1, x2) ∈ G×H and y = (y1, y2) ∈ G×H.
Let A and B are commutative then A(x1y1) = A(y1x1) and B(x2y2) = B(y2x2). Thus

A(x1y1) = (CMA(x1y1), CNA(x1y1)) = A(y1x1) = (CMA(y1x1), CNA(y1x1))

and
B(x1y1) = (CMB(x1y1), CNB(x1y1)) = B(y1x1) = (CMB(y1x1), CNB(y1x1)).

Then
CMA×B(xy) = CMA×B((x1, x2)(y1, y2))

= CMA×B(x1y1, x2y2)

= T (CMA(x1y1), CMB(x2y2))

= T (CMA(y1x1), CMB(y2x2))

= CMA×B(y1x1, y2x2)

= CMA×B((y1, y2)(x1, x2))

= CMA×B(yx)

thus CMA×B(xy) = CMA×B(yx). Also
CNA×B(xy) = CNA×B((x1, x2)(y1, y2))

= CNA×B(x1y1, x2y2)

= C(CNA(x1y1), CNB(x2y2))

= C(CNA(y1x1), CNB(y2x2))

= CNA×B(y1x1, y2x2)

= CNA×B((y1, y2)(x1, x2))

= CNA×B(yx)

then CNA×B(xy) = CNA×B(yx). Therefore
(A×B)(xy) = (CMA×B(xy), CNA×B(xy)) = (CMA×B(yx), CNA×B(yx)) = (A×B)(yx)

and then A×B is a commutative.
Conversely, suppose that A×B is a commutative. Then

(A×B)(xy) = (A×B)(yx)

if and only if
CMA×B((x1, x2)(y1, y2)) = CMA×B((y1, y2)(x1, x2))

and
CNA×B((x1, x2)(y1, y2)) = CNA×B((y1, y2)(x1, x2))

if and only if
CMA×B(x1y1, x2y2) = CMA×B(y1x1, y2x2)

and
CNA×B(x1y1, x2y2) = CNA×B(y1x1, y2x2)
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if and only if

T (CMA(x1y1), CMB(x2y2)) = T (CMA(y1x1), CMB(y2x2))

and
C(CNA(x1y1), CNB(x2y2)) = C(CNA(y1x1), CNB(y2x2))

if and only if

CMA(x1y1) = CMA(y1x1) and CMB(x2y2) = CMB(y2x2)

and
CNA(x1y1) = CNA(y1x1) and CNB(x2y2) = CNB(y2x2).

Thus

A(x1y1) = (CMA(x1y1), CNA(x1y1)) = (CMA(y1x1), CNA(y1x1)) = A(y1x1)

and

B(x2y2) = (CMB(x2y2), CNB(x2y2)) = (CMB(y2x2), CNB(y2x2)) = B(y2x2)

hence A = (CMA, CNA) and B = (CMB, CNB) will be commutatives. □

Definition 3.16. Let G × H and I × J be groups and f : G × H → I × J be a homo-
morphism. Let A = (CMA, CNA) ∈ IFMS(G) and B = (CMB, CNB) ∈ IFMS(H) and
C = (CMC , CNC) ∈ IFMS(I) and D = (CMD, CND) ∈ IFMS(J) such that A × B ∈
IFMS(G×H) and C ×D ∈ IFMS(I × J). Define f(A×B) ∈ IFMS(I × J) as

f(A×B) = f(CMA×B, CNA×B) = (f(CMA×B), f(CNA×B)) = (CMf(A×B), CNf(A×B))

such that for all (i, j) ∈ I × J

f(CMA×B)(i, j) = (CMf(A×B))(i, j)

=

{
sup{CMA×B(g, h) | (g, h) ∈ G×H, f(g, h) = (i, j)} if f−1(i, j) ̸= ∅

0 otherwise
and

f(CNA×B)(i, j) = (CNf(A×B))(i, j)

=

{
inf{CNA×B(g, h) | (g, h) ∈ G×H, f(g, h) = (i, j)} if f−1(i, j) ̸= ∅

0 otherwise.

Also we define f−1(C ×D) ∈ IFMS(G×H) as

f−1(C×D) = f−1(CMC×D, CNC×D) = (f−1(CMC×D), f
−1(CNC×D)) = (CMf−1(C×D), CNf−1(C×D))

such that for all (g, h) ∈ G×H

f−1(C×D)(g, h) = (CMf−1(C×D)(g, h), CNf−1(C×D)(g, h)) = (CMC×D(f(g, h)), CNC×D(f(g, h))).

Proposition 3.17. Let G×H and I×J be groups and f : G×H → I×J be an epimorphism.
If A = (CMA, CNA) ∈ IFMSN(G) and B = (CMB, CNB) ∈ IFMSN(H) and A × B ∈
IFMSN(G×H), then f(A×B) ∈ IFMSN(I × J).
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Proof. Let X = (i1, j1) ∈ I × J and Y = (i2, j2) ∈ I × J such that
f−1(XY ) = f−1((i1, j1)(i2, j2)) = f−1(i1i2, j1j2) ̸= ∅.

Then
(1)

CMf(A×B)(XY ) = CMf(A×B)((i1, j1)(i2, j2)) = CMf(A×B)(i1i2, j1j2)

= sup{CMA×B(g1g2, h1h2) | g1, g2 ∈ G,h1, h2 ∈ H, f(g1g2, h1h2) = (i1i2, j1j2)}
= sup{CMA×B(g1g2, h1h2) | g1, g2 ∈ G,h1, h2 ∈ H, (f(g1g2), f(h1h2)) = (i1i2, j1j2)}
= sup{CMA×B(g1g2, h1h2) | g1, g2 ∈ G,h1, h2 ∈ H, f(g1g2) = i1i2, f(h1h2) = j1j2}

= sup{T (CMA(g1g2), CMB(h1h2)) | g1, g2 ∈ G,h1, h2 ∈ H, f(g1g2) = i1i2, f(h1h2) = j1j2}
≥ sup{T (T (CMA(g1), CMA(g2)), T (CMB(h1), CMB(h2))) | f(g1g2) = i1i2, f(h1h2) = j1j2}
= sup{T (T (CMA(g1), CMB(h1)), T (CMA(g2), CMB(h2))) | f(g1g2) = i1i2, f(h1h2) = j1j2}

= sup{T (T (CMA(g1), CMB(h1)), T (CMA(g2), CMB(h2)))

| f(g1) = i1, f(g2) = i2, f(h1) = j1, f(h2) = j2}
= sup{T (CMA×B(g1, h1), CMA×B(g2, h2)) | f(g1) = i1, f(g2) = i2, f(h1) = j1, f(h2) = j2}
= T (sup{CMA×B(g1, h1) | f(g1, h1) = (i1, j1)}, sup{CMA×B(g2, h2) | f(g2, h2) = (i2, j2)})

= T (CMf(A×B)(i1, j1), CMf(A×B)(i2, j2)) = T (CMf(A×B)(X), CMf(A×B)(Y ))

thus
CMf(A×B)(XY ) ≥ T (CMf(A×B)(X), f(A×B)(Y )).

(2)
CNf(A×B)(XY ) = CNf(A×B)((i1, j1)(i2, j2)) = CNf(A×B)(i1i2, j1j2)

= sup{CNA×B(g1g2, h1h2) | g1, g2 ∈ G,h1, h2 ∈ H, f(g1g2, h1h2) = (i1i2, j1j2)}
= inf{CNA×B(g1g2, h1h2) | g1, g2 ∈ G,h1, h2 ∈ H, (f(g1g2), f(h1h2)) = (i1i2, j1j2)}
= inf{CNA×B(g1g2, h1h2) | g1, g2 ∈ G,h1, h2 ∈ H, f(g1g2) = i1i2, f(h1h2) = j1j2}

= inf{C(CNA(g1g2), CMB(h1h2)) | g1, g2 ∈ G,h1, h2 ∈ H, f(g1g2) = i1i2, f(h1h2) = j1j2}
≤ inf{C(C(CNA(g1), CNA(g2)), C(CNB(h1), CNB(h2))) | f(g1g2) = i1i2, f(h1h2) = j1j2}
= inf{C(C(CNA(g1), CNB(h1)), C(CNA(g2), CNB(h2))) | f(g1g2) = i1i2, f(h1h2) = j1j2}

= inf{C(C(CNA(g1), CNB(h1)), C(CNA(g2), CNB(h2)))

| f(g1) = i1, f(g2) = i2, f(h1) = j1, f(h2) = j2}
= inf{C(CNA×B(g1, h1), CNA×B(g2, h2)) | f(g1) = i1, f(g2) = i2, f(h1) = j1, f(h2) = j2}
= C(inf{CNA×B(g1, h1) | f(g1, h1) = (i1, j1)}, inf{CNA×B(g2, h2) | f(g2, h2) = (i2, j2)})

= C(CNf(A×B)(i1, j1), CNf(A×B)(i2, j2)) = C(CNf(A×B)(X), CNf(A×B)(Y ))

thus
CNf(A×B)(XY ) ≤ C(CNf(A×B)(X), f(A×B)(Y )).

Let X = (i, j) ∈ I × J then
(3)

CMf(A×B)(X
−1) = CMf(A×B)((i, j)

−1) = CMf(A×B)(i
−1, j−1)

= sup{CMA×B(g
−1, h−1) | g ∈ G,h ∈ H, f(g−1, h−1) = (i−1, j−1)}

= sup{CMA×B(g
−1, h−1) | g ∈ G,h ∈ H, (f(g−1), f(h−1)) = (i−1, j−1)}

= sup{CMA×B(g
−1, h−1) | g ∈ G,h ∈ H, f(g−1) = i−1, f(h−1)) = j−1}

= sup{T (CMA(g
−1), CMB(h

−1)) | g ∈ G,h ∈ H, f(g−1) = i−1, f(h−1)) = j−1}
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≥ sup{T (CMA(g), CMB(h)) | g ∈ G,h ∈ H, f−1(g) = i−1, f−1(h) = j−1}
= sup{T (CMA(g), CMB(h)) | g ∈ G,h ∈ H, f(g) = i, f(h) = j}

= sup{CMA×B(g, h) | (g, h) ∈ G×H, f(g, h) = (i, j)}
= CMf(A×B)(i, j) = CMf(A×B)(X)

and then
CMf(A×B)(X

−1) ≥ CMf(A×B)(X).

(4)
CNf(A×B)(X

−1) = CNf(A×B)((i, j)
−1) = CNf(A×B)(i

−1, j−1)

= inf{CNA×B(g
−1, h−1) | g ∈ G,h ∈ H, f(g−1, h−1) = (i−1, j−1)}

= inf{CNA×B(g
−1, h−1) | g ∈ G,h ∈ H, (f(g−1), f(h−1)) = (i−1, j−1)}

= inf{CNA×B(g
−1, h−1) | g ∈ G,h ∈ H, f(g−1) = i−1, f(h−1)) = j−1}

= inf{C(CNA(g
−1), CNB(h

−1)) | g ∈ G,h ∈ H, f(g−1) = i−1, f(h−1)) = j−1}
≤ inf{C(CNA(g), CNB(h)) | g ∈ G,h ∈ H, f−1(g) = i−1, f−1(h) = j−1}

= inf{C(CNA(g), CNB(h)) | g ∈ G,h ∈ H, f(g) = i, f(h) = j}
= inf{CNA×B(g, h) | (g, h) ∈ G×H, f(g, h) = (i, j)}

= CNf(A×B)(i, j) = CMf(A×B)(X)

and then
CNf(A×B)(X

−1) ≤ CNf(A×B)(X).

Therefore f(A×B) = (CMf(A×B), CNf(A×B)) ∈ IFMSN(I × J). □
Proposition 3.18. Let G×H and I×J be groups and f : G×H → I×J be a homomorphism.
If C = (CMC , CNC) ∈ IFMSN(I) and D = (CMD, CND) ∈ IFMSN(J) and C × D ∈
IFMSN(I × J), then f−1(C ×D) ∈ IFMSN(G×H).

Proof. Let X = (g1, h1) ∈ G×H and Y = (g2, h2) ∈ G×H. Then
(1)

CMf−1(C×D)(XY ) = CMf−1(C×D)((g1, h1)(g2, h2))

= CMf−1(C×D)(g1g2, h1h2)) = CMC×D(f(g1g2, h1h2))

= CMC×D(f(g1g2), f(h1h2)) = T (CMC(f(g1g2)), CMD(f(h1h2)))

= T (CMC(f(g1)f(g2)), CMD(f(h1)f(h2)))

≥ T (T (CMC(f(g1)), CMC(f(g2))), T (CMD(f(h1)), CMD(f(h2)))

= T (T (CMC(f(g1)), CMD(f(h1))), T (CMC(f(g2), CMD(f(h2))) (Lemma 2.10)
= T (CMC×D(f(g1), f(h1)), CMC×D(f(g2), f(h2)))

= T (CMC×D(f(g1, h1)), CMC×D(f(g2, h2)))

= T (CMf−1(C×D)(g1, h1), CMf−1(C×D)(g2, h2))

= T (CMf−1(C×D)(X), CMf−1(C×D)(Y ))

and then
CMf−1(C×D)(XY ) ≥ T (CMf−1(C×D)(X), CMf−1(C×D)(Y )).

(2)
CNf−1(C×D)(XY ) = CNf−1(C×D)((g1, h1)(g2, h2))

= CNf−1(C×D)(g1g2, h1h2)) = CNC×D(f(g1g2, h1h2))

= CNC×D(f(g1g2), f(h1h2)) = C(CNC(f(g1g2)), CND(f(h1h2)))
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= C(CNC(f(g1)f(g2)), CND(f(h1)f(h2)))

≤ C(C(CNC(f(g1)), CNC(f(g2))), C(CND(f(h1)), CND(f(h2)))

= C(C(CNC(f(g1)), CND(f(h1))), C(CNC(f(g2), CND(f(h2))) (Lemma 2.10)

= C(CNC×D(f(g1), f(h1)), CNC×D(f(g2), f(h2)))

= C(CNC×D(f(g1, h1)), CNC×D(f(g2, h2)))

= C(CNf−1(C×D)(g1, h1), CMf−1(C×D)(g2, h2))

= C(CNf−1(C×D)(X), CMf−1(C×D)(Y ))

hence
CNf−1(C×D)(XY ) ≤ C(CMf−1(C×D)(X), CNf−1(C×D)(Y )).

Let X = (g, h) ∈ G×H. Then
(3)

CMf−1(C×D)(X
−1) = CMf−1(C×D)((g1, h1)

−1) = CMC×D(f(g, h)
−1)

= CMC×D(f(g
−1, h−1)) = CMC×D(f

−1(g), f−1(h)) = T (CMC(f
−1(g)), CMD(f

−1(h)))

≥ T (CMC(f(g)), CMD(f(h))) = CMC×D(f(g), f(h)) = CMC×D(f(g, h))

= CMf−1(C×D)(g, h) = CMf−1(C×D)(X)

and then
CMf−1(C×D)(X

−1) ≥ CMf−1(C×D)(X).

(4)
CNf−1(C×D)(X

−1) = CNf−1(C×D)((g1, h1)
−1) = CNC×D(f(g, h)

−1)

= CNC×D(f(g
−1, h−1)) = CNC×D(f

−1(g), f−1(h)) = C(CNC(f
−1(g)), CND(f

−1(h)))

≤ C(CNC(f(g)), CND(f(h))) = CNC×D(f(g), f(h)) = CNC×D(f(g, h))

= CNf−1(C×D)(g, h) = CNf−1(C×D)(X)

and then
CNf−1(C×D)(X

−1) ≤ CNf−1(C×D)(X).

Hence f−1(C ×D) = (CMf−1(C×D), CNf−1(C×D)) ∈ IFMSN(G×H). □
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