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Abstract. The paper is devoted to continuous frames and continuous Riesz basis in Hilbert
C∗-modules. We define a continuous Riesz basis in Hilbert C∗-modules, and investigate the
relationship between a continuous Riesz basis and an L2-independent Bessel mapping. Also,
we show that a continuous frame is a continuous Riesz basis if and only if it is a Riesz-
type frame. Finally, we give the relation between two continuous Riesz bases in Hilbert
C∗-modules.
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1. Introduction and Background
Frame theory is nowadays a fundamental research area in mathematics, computer science

and engineering with many interesting applications in a variety of different fields. Frames
were first introduced by Duffin and Schaeffer [7] in the context of nonharmonic fourier series.
Then Daubecheies, Grassman and Mayer [6] reintroduced and developed them. The concept
of a generalization of frames to a family indexed by some locally compact space endowed with
a Radon measure was proposed by G. Kaiser [13] and independently by Ali, Antoine and
Gazeau [2]. These frames are known as continuous frames. For a discussion of continuous
frames, we refer to Refs.[16, 15]. Arefijamaal and et al. [4] introduced continuous Riesz bases
and give some equivalent conditions for a continuous frame to be a continuous Riesz basis.

One reason to study frames in Hilbert C∗-modules is that there are some differences between
Hilbert spaces and Hilbert C∗-modules. For example, in general, every bounded operator on
a Hilbert space has an unique adjoint, while this fact not hold for bounded operators on a
Hilbert C∗-module. Thus it is more difficult to make a discussion of the theory of Hilbert
C∗-modules than that of Hilbert spaces in general. We refer the readers to [14], for more
details on Hilbert C∗-modules. Frank and Larson [9] presented a general approach to the
frame theory in Hilbert C∗-modules. The theory of frames has been extended from Hilbert
spaces to Hilbert C∗-modules, see [1, 10, 12, 9, 17, 18].

The paper is organized as follows. First, we recall the basic definitions and some notations
about Hilbert C∗-modules, and we also give some properties of them. In section 2, we recall
the notion of continuous frames in Hilbert C∗-modules and their operators. In section 3, by
defining a µ-complete Bessel mapping we give the definition of a continuous Riesz basis in
Hilbert C∗-modules. We investigate the relation between a continuous Riesz basis and an
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L2-independent Bessel mapping. Also, we show that a continuous Riesz basis is a continuous
exact frame and a continuous frame is a continuous Riesz basis if and only if it is a Riesz-
type frame. Finally, we give the relation between two continuous Riesz bases in Hilbert
C∗-modules.

2. Preliminaries
First, we recall some definitions and basic properties of Hilbert C∗-modules. We give

only a brief introduction to the theory of Hilbert C∗-modules to make our explanations self-
contained. For comprehensive accounts, we refer to [14, 19]. Throughout this paper, A shows
a unital C∗-algebra.

Definition 2.1. A pre-Hilbert module over unital C∗-algebra A is a complex vector space U
which is also a left A-module equipped with an A-valued inner product ⟨., .⟩ : U × U → A
which is C-linear and A-linear in its first variable and satisfies the following conditions:

(i) ⟨f, f⟩ ≥ 0,
(ii) ⟨f, f⟩ = 0 iff f = 0,
(iii) ⟨f, g⟩∗ = ⟨g, f⟩,
(iv) ⟨af, g⟩ = a⟨f, g⟩,

for all f, g ∈ U and a ∈ A.

A pre-Hilbert A-module U is called Hilbert A-module if U is complete with respect to the
topology determined by the norm ∥f∥ = ∥⟨f, f⟩∥

1
2 .

By [12, Example 2.46], if A is an C∗-algebra, then it is a Hilbert A-module with respect
to the inner product

⟨a, b⟩ = ab∗, (a, b ∈ A).

Example 2.2. [19, Page 237] Let l2(A) be the set of all sequences {an}n∈N of elements of
an C∗-algebra A such that the series

∑∞
n=1 ana

∗
n is convergent in A. Then l2(A) is a Hilbert

A-module with respect to the pointwise operations and inner product defined by

⟨{an}n∈N, {bn}n∈N⟩ =
∞∑
n=1

anb
∗
n.

In the following lemma the Cauchy-Schwartz inequality reconstructed in Hilbert C∗-modules.

Lemma 2.3. [19, Lemma 15.1.3] (Cauchy-Schwartz inequality) Let U be a Hilbert C∗-
module over a unital C∗-algebra A. Then

∥⟨f, g⟩∥2 ≤ ∥⟨f, f⟩∥ ∥⟨g, g⟩∥,

for all f, g ∈ U .

Definition 2.4. [14, Page 8] Let U and V be two Hilbert C∗-modules over a unital C∗-algebra
A. A map T : U → V is said to be adjointable if there exists a map T ∗ : V → U satisfying

⟨Tf, g⟩ = ⟨f, T ∗g⟩,

for all f ∈ U, g ∈ V . Such a map T ∗ is called the adjoint of T . By End∗A(U) we denote the
set of all adjointable maps on U .

It is surprising that an adjointable operator is automatically linear and bounded.
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Lemma 2.5. [20, Lemma 1.1] Let U and V be two Hilbert C∗-modules over a unital C∗-algebra
A and T ∈ End∗A(U, V ) has closed range. Then T ∗ has closed range and

U = Ker(T )⊕R(T ∗) , V = Ker(T ∗)⊕R(T )

.

Lemma 2.6. [3, Lemma 0.1] Let U and V be two Hilbert C∗-modules over a unital C∗-algebra
A and T ∈ End∗A(U, V ). Then

(i) If T is injective and T has closed range, then the adjointable map T ∗T is invertible
and

∥(T ∗T )−1∥−1 ≤ T ∗T ≤ ∥T∥2.
(ii) If T is surjective, then the adjointable map TT ∗ is invertible and

∥(TT ∗)−1∥−1 ≤ TT ∗ ≤ ∥T∥2.

Now, we introduce continuous frames in Hilbert C∗-modules over a unital C∗-algebra A,
and then we give some results for these frames.

Let Y be a Banach space, (X , µ) a measure space, and f : X → Y a measurable function.
The integral of the Banach-valued function f has been defined by Bochner and others. Most
properties of this integral are similar to those of the integral of real-valued functions (see
[8, 21]). Since every C∗-algebra and Hilbert C∗-module is a Banach space, hence we can use
this integral in these spaces. In the following, we assume that A is a unital C∗-algebra and
U is a Hilbert C∗-module over A and (Ω, µ) is a measure space.

Definition 2.7. [11] Let (Ω, µ) be a measure space and A is a unital C∗-algebra. We define,

L2(Ω,A) = {φ : Ω → A ;

∫
Ω
∥ϕ(ω)(φ(ω))∗∥ dµ(ω) <∞}.

For any φ,ψ ∈ L2(Ω,A), the inner product is defined by

⟨φ,ψ⟩ =
∫
Ω
⟨φ(ω), ψ(ω)⟩dµ(ω) =

∫
Ω
φ(ω)ψ(ω)∗dµ(ω),

and the norm is defined by ∥φ∥ = ∥⟨φ,φ⟩∥
1
2 . It was shown in [14] L2(Ω,A) is a Hilbert

A-module.

Continuous frames for Hilbert A-modules are defined as follows.

Definition 2.8. [10] A mapping F : Ω → U is called a continuous frame for U if
(i) F is weakly-measurable, i.e, for any f ∈ U , the mapping ω 7−→ ⟨f, F (ω)⟩ is measurable

on Ω.
(ii) There exist constants A,B > 0 such that

(2.1) A⟨f, f⟩ ≤
∫
Ω
⟨f, F (ω)⟩⟨F (ω), f⟩dµ(ω) ≤ B⟨f, f⟩, (f ∈ U).

The constants A,B are called lower and upper frame bounds, respectively. The mapping
F is called Bessel if the right inequality in (2.1) holds and is called tight if A = B.

Definition 2.9. [11] A continuous frame F : Ω → U is called exact if for every measurable
subset Ω1 ⊆ Ω with 0 < µ(Ω1) <∞, the mapping F |Ω\Ω1

is not a continuous frame for U .
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Example 2.10. Let U =
{(

a 0 0
0 0 b

)
: a, b ∈ C

}
, and A =

{(
x 0
0 y

)
: x, y ∈ C

}
which is

an C∗-algebra. We define the inner product
⟨., .⟩ : U × U → A

(M,N) 7−→M(N)t.

This inner product makes U an C∗-module on A. We consider a measure space (Ω = [0, 1], µ)

whose µ is the Lebesgue measure. Also F : Ω → U defined by F (ω) =
(√

3ω 0 0

0 0
√
3ω

)
, for

any ω ∈ Ω.
For each f =

(
a 0 0
0 0 b

)
∈ U , we have∫

[0,1]
⟨f, F (ω)⟩⟨F (ω), f⟩dµ(ω) =

∫
[0,1]

3ω2

(
|a|2 0
0 |b|2

)
dµ(ω)

=

(
|a|2 0
0 |b|2

)
= ⟨f, f⟩.

Therefore F is a continuous tight frame with bounds A = B = 1.

The following operators for Bessel mappings and continuous frames in Hilbert C∗-modules
are defined in [11].

Let F : Ω → U be a Bessel mapping . Then
(i) The pre-frame operator or synthesis operator operator TF : L2(Ω,A) → U weakly

defined by

(2.2) ⟨TFφ, f⟩ =
∫
Ω
φ(ω)⟨F (ω), f⟩dµ(ω), (f ∈ U).

(ii) The adjoit of T , called the analysis operator T ∗
F : U → L2(Ω,A) is defined by

(2.3) (T ∗
F f)(ω) = ⟨f, F (ω)⟩, (ω ∈ Ω).

The pre-frame operator is a well defined, surjective, adjointable A-linear map and is bounded
with ∥TF ∥ ≤

√
B and the analysis operator T ∗

F : U → L2(Ω, A) is injective and has closed
range [11].

If F : Ω → U is a continuous frame for Hilbert C∗-module U . Then the frame operator
SF : U → U is weakly defined by

(2.4) ⟨SF f, f⟩ =
∫
Ω
⟨f, F (ω)⟩⟨F (ω), f⟩dµ(ω), (f ∈ U).

In [11] we prove that the frame operator SF is positive, adjointable, selfadjoit and invertible
and the lower and the upper bounds of F are, respectively ∥S−1

F ∥−1 and ∥TF ∥2. Now we
introduce the concept of the duals of continuous frames in Hilbert C∗-modules and give some
important properties of continuous frames and their duals.

Definition 2.11. Let F : Ω → U be a continuous Bessel mapping. A continuous Bessel
mapping G : Ω → U is called a dual for F if for every f ∈ U

(2.5) f =

∫
Ω
⟨f,G(ω)⟩F (ω)dµ(ω),
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or

(2.6) ⟨f, g⟩ =
∫
Ω
⟨f,G(ω)⟩⟨F (ω), g⟩dµ(ω) (f, g ∈ U).

In this case (F,G) is called a dual pair. If TF and TG denote the pre-frame operators of F
and G, respectively, then (2.6) is equivalent to TFT ∗

G = IU . The condition

⟨f, g⟩ =
∫
Ω
⟨f,G(ω)⟩⟨F (ω), g⟩dµ(ω) (f, g ∈ U),

is equivalent
⟨f, g⟩ =

∫
Ω
⟨f, F (ω)⟩⟨G(ω), g⟩dµ(ω) (f, g ∈ U),

because TFT ∗
G = IU if and only if TGT ∗

F = IU .
Also, by reconstruction formula we have

f = S−1
F SF f = S−1

∫
Ω
⟨f, F (ω)⟩F (ω)dµ(ω) =

∫
Ω
⟨f, F (ω)⟩S−1

F F (ω)dµ(ω),

and
f = SFS

−1
F f =

∫
Ω
⟨S−1

F f, F (ω)⟩F (ω)dµ(ω) =
∫
Ω
⟨f, S−1

F F (ω)⟩F (ω)dµ(ω).

Then S−1
F F is a dual for F , which is called canonical dual.

3. Main Results
In this section, we introduce the concept of continuous Riesz bases in Hilbert C∗-modules

and give some important properties of them. First, we give the notion of a Riesz-type frame
that is introduced in [11].

Definition 3.1. Let F : Ω → U be a continuous frame for Hilbert C∗-module U . If F has
only one dual, we call F a Riesz-type frame.

Theorem 3.2. [11, Theorem 3.4] Let F : Ω → U be a continuous frame for Hilbert C∗-module
U over a unital C∗-algebra A. Then F is a Riesz-type frame if and only if the analysis operator
T ∗
F : U → L2(Ω,A) is surjective.

Definition 3.3. Let U be a Hilbert C∗-module over a unital C∗-algebra A. A Bessel mapping
F : Ω → U is called a µ-complete if

{f ∈ U ; ⟨f, F (ω)⟩ = 0 a.e. [µ]} = {0}.

⟨f, F (ω)⟩ = 0 a.e. [µ] means that µ{f ; ⟨f, F (ω)⟩ ̸= 0} = 0.
Now, we define a continuous Riesz basis for Hilbert C∗-modules. Recall that |a|2 = a∗a, for
any element a in C∗-algebra A.

Definition 3.4. Let U be a Hilbert C∗-module over a unital C∗-algebra A. A weakly-
measurable mapping F : Ω → U is called a continuous Riesz basis for Hilbert C∗-module U ,
if the following conditions are satisfied.

(i) F is µ-complete.
(ii) There are two constants A,B > 0 such that

(3.1) A

∥∥∥∥∫
Ω1

|φ(ω)∗|2dµ(ω)
∥∥∥∥ 1

2

≤
∥∥∥∥∫

Ω1

φ(ω)F (ω)dµ(ω)

∥∥∥∥ ≤ B

∥∥∥∥∫
Ω1

|φ(ω)∗|2dµ(ω)
∥∥∥∥ 1

2

,
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for every φ ∈ L2(Ω,A) and measurable subset Ω1 ⊆ Ω with µ(Ω1) < +∞.
Remark 3.5. Let F : Ω → U be a continuous Riesz basis for Hilbert C∗-module U . Define

T : L2(Ω,A) −→ U

φ 7−→
∫
Ω
φ(ω)F (ω)dµ(ω)

Then T is well-defined, adjointable map with T ∗f = {⟨f, F (ω)⟩}ω∈Ω and bounded such that
A∥φ∥2 ≤ ∥Tφ∥2 ≤ B∥φ∥2.

Hence F is a continuous Bessel mapping. Also by µ-completeness of F we have
Ker(T ∗) = {f ∈ U ; ⟨f, F (ω)⟩ = 0 ∀ω ∈ Ω} = {0},

so by lemma 2.5, R(T ) = Ker(T ∗)⊥ = U . Then T is surjective and by [11, Theorem 2.15], F
is a continuous frame for U .
Definition 3.6. Let U be a Hilbert C∗-module over a unital C∗-algebra A. A Bessel mapping
F : Ω → U is said to be L2-independent if for φ ∈ L2(Ω,A),

∫
Ω φ(ω)F (ω)dµ(ω) = 0 implies

that φ(ω) = 0, for each ω ∈ Ω.
We give the following result.

Theorem 3.7. Let F : Ω → U be a continuous frame for Hilbert C∗-module U over a unital
C∗-algebra A with bounds A,B > 0. Then the following are equivalent

(i) F is a continuous Riesz basis.
(ii) F is µ-complete and L2-independent.

Proof. (i) =⇒ (ii) Let F be a continuous Riesz basis and
∫
Ω φ(ω)F (ω)dµ(ω) = 0 for some

φ ∈ L2(Ω,A). Since

A

∥∥∥∥∫
Ω
|φ(ω)∗|2dµ(ω)

∥∥∥∥ ≤
∥∥∥∥∫

Ω
φ(ω)F (ω)dµ(ω)

∥∥∥∥2 = 0,

so
⟨{φ(ω)}ω∈Ω, {φ(ω)}ω∈Ω⟩ =

∫
Ω
|φ(ω)∗|2dµ(ω) = 0.

Hence {φ(ω)}ω∈Ω = 0 and φ = 0 i.e. F is L2-independent.
(ii) =⇒ (i) Let F be a L2-independent continuous frame for Hilbert C∗-module U with

bounds A,B > 0. For φ ∈ L2(Ω,A) and measurable subset Ω1 ⊆ Ω with µ(Ω1) < +∞, put
f =

∫
Ω1
φ(ω)F (ω)dµ(ω). Then we have,

f =

∫
Ω1

φ(ω)F (ω)dµ(ω) =

∫
Ω
φ(ω)χΩ1(ω)F (ω)dµ(ω).

Also f =
∫
Ω⟨f, S

−1F (ω)⟩F (ω)dµ(ω) where S is the continuous frame operator of F .
Since F is L2-independent, so

φ(ω)χΩ1(ω) = ⟨f, S−1F (ω)⟩, (ω ∈ Ω).

and by [11, Corollary 2.11],
B−1⟨f, f⟩ ≤ ⟨S−1f, f⟩ ≤ A−1⟨f, f⟩,

and so
A∥⟨S−1f, f⟩∥ ≤ ∥⟨f, f⟩∥ ≤ B∥⟨S−1f, f⟩∥.
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Now we show that ⟨S−1f, f⟩ =
∫
Ω1

|φ(ω)∗|2dµ(ω).

⟨S−1f, f⟩ = ⟨f, S−1f⟩

=

∫
Ω1

⟨f, φ(ω)S−1F (ω)⟩dµ(ω)

=

∫
Ω1

⟨f, S−1F (ω)⟩φ(ω)∗dµ(ω)

=

∫
Ω1

φ(ω)φ(ω)∗dµ(ω) =

∫
Ω1

|φ(ω)∗|2dµ(ω).

Therefore,

A

∥∥∥∥∫
Ω1

|φ(ω)∗|2dµ(ω)
∥∥∥∥ ≤

∥∥∥∥∫
Ω1

φ(ω)F (ω)dµ(ω)

∥∥∥∥2 ≤ B

∥∥∥∥∫
Ω1

|φ(ω)∗|2dµ(ω)
∥∥∥∥ ,

i.e. F is a continuous Riesz basis for U with bounds A,B. □

Theorem 3.8. Let F : Ω → U be a continuous frame for Hilbert C∗-module U over a unital
C∗-algebra A. If F is a continuous Riesz basis for U , then it is a continuous exact frame.

Proof. Let Ω1 ⊆ Ω be a measurable subset of Ω with 0 < µ(Ω1) <∞. For φ = χΩ1 ∈ L2(Ω,A)
we have,

∥
∫
Ω1

F (ω)dµ(ω)∥2 = ∥
∫
Ω1

χΩ1(ω)F (ω)dµ(ω)∥2

≥ A∥
∫
Ω1

|χΩ1(ω)|2dµ(ω)∥

= A∥µ(Ω1)∥ > 0.

Hence
∫
Ω1
F (ω)dµ(ω) ̸= 0.

Now suppose that F : Ω \ Ω1 → U is a continuous frame for U . Then by completeness of
F |Ω\Ω1

there exists φ0 ∈ L2(Ω \ Ω1,A) such that∫
Ω1

F (ω)dµ(ω) =

∫
Ω\Ω1

φ0(ω)F (ω)dµ(ω).

Define φ : Ω → A where

φ(ω) =

{
φ0(ω) ω ∈ Ω \ Ω1

1 ω ∈ Ω1.

Then φ ∈ L2(Ω,A) and ∫
Ω
χΩ1(ω)F (ω)dµ(ω) =

∫
Ω
φ(ω)F (ω)dµ(ω),

so
∫
Ω(φ−χΩ1)(ω)F (ω)dµ(ω) = 0. Hence L2-independent shows that φ = χΩ1 and so φ0 = 0.

Therefore ∫
Ω1

F (ω)dµ(ω) =

∫
Ω\Ω1

φ0(ω)F (ω)dµ(ω) = 0,

which is a contradiction. □
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Proposition 3.9. Let F : Ω → U be a continuous Bessel mapping for Hilbert C∗-module U
over a unital C∗-algebra A with pre-frame operator T . Suppose that F is µ-complete and the
mapping

V : L2(Ω,A) −→ L2(Ω,A)

φ 7−→
∫
Ω
φ(ω)⟨F (ω), F (.)⟩dµ(ω)

defines a bounded, adjointable and invertible operator. Then F is a continuous Riesz basis
for U .

Proof. Since F is Bessel, so the pre-frame operator T is well-defined and bounded and ad-
jointable with T ∗f = {⟨f, F (ω)⟩}ω∈Ω for f ∈ U .
Also T ∗T = V , because

(T ∗T )(φ) = T ∗(

∫
Ω
φ(ω)F (ω)dµ(ω))

= {⟨
∫
Ω
φ(ω)F (ω)dµ(ω), F (γ)⟩}γ∈Ω

= {
∫
Ω
φ(ω)⟨F (ω), F (γ)⟩dµ(ω)}γ∈Ω.

Since T is bounded, so there exist B > 0 such that ∥Tφ∥2 ≤ B∥φ∥2 i.e.

∥
∫
Ω
φ(ω)F (ω)dµ(ω)∥2 ≤ B∥

∫
Ω
|φ(ω)∗|2dµ(ω)∥.

Since T ∗T is positive, so∥∥∥∥∫
Ω
φ(ω)F (ω)dµ(ω)

∥∥∥∥2 = ∥Tφ∥2

= ∥⟨T ∗Tφ, φ⟩∥

=
∥∥∥⟨(T ∗T )

1
2φ, (T ∗T )

1
2φ⟩

∥∥∥
=

∥∥∥(T ∗T )
1
2φ

∥∥∥2
≥

∥∥∥(T ∗T )
−1
2

∥∥∥−2
∥φ∥2 .

Therefore F is continuous Riesz basis with lower and upper bounds
∥∥∥(T ∗T )

−1
2

∥∥∥−2
and B,

respectively. □

Theorem 3.10. Let F : Ω → U be a continuous frame for Hilbert C∗-module U over a unital
C∗-algebra A with pre-frame operator operator T . Then F is a continuous Riesz basis for U
if and only if F is a Riesz-type frame.

Proof. (=⇒) Let F1 ̸= F2 be two duals of F . Then for each f ∈ U ,∫
Ω
⟨f, F1(ω)− F2(ω)⟩F (ω)dµ(ω) =

∫
Ω
⟨f, F1(ω)⟩F (ω)dµ(ω)−

∫
Ω
⟨f, F2(ω)⟩F (ω)dµ(ω)

= f − f = 0.
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Since F is continuous Riesz basis, so is L2-independent and

⟨f, F1(ω)− F2(ω)⟩ = 0 =⇒ ⟨f, F1(ω)⟩ = ⟨f, F2(ω)⟩ (ω ∈ Ω).

Therefore F1 = F2.
(⇐=) Let F be Riesz-type frame and φ ∈ L2(Ω,A) such that

∫
Ω φ(ω)F (ω)dµ(ω) = 0.

Since F is Riesz-type, so R(T ∗) = L2(Ω,A). Also L2(Ω,A) = Ker(T )⊕R(T ∗). Then

φ ∈ Ker(T ) = R(T ∗)⊥ = {0},

then φ = 0 and so F is L2-independent. Therefore F is a continuous Riesz basis. □

Corollary 3.11. Let F : Ω → U be a continuous frame for Hilbert C∗-module U over a unital
C∗-algebra A. If F is a Riesz-type frame, then it is a continuons exact frame.

Duo to the Theorem 3.10, the converse of the Proposition 3.9 holds as follows.

Corollary 3.12. Let F : Ω → U be a continuous Riesz basis for Hilbert C∗-module U over a
unital C∗-algebra A with bounds A,B > 0 and pre-frame operator T . Then F is µ-complete
and the mapping

V : L2(Ω,A) −→ L2(Ω,A)

φ 7−→
∫
Ω
φ(ω)⟨F (ω), F (.)⟩dµ(ω)

defines a bounded, adjointable and invertible operator.

Proof. Let F be a continuous Riesz basis for U with bounds A,B > 0. Then the pre-frame
operator T satisfies ∥T∥ ≤

√
B. Also,

(T ∗T )(φ) = T ∗(

∫
Ω
φ(ω)F (ω)dµ(ω))

= {⟨
∫
Ω
φ(ω)F (ω)dµ(ω), F (γ)⟩}γ∈Ω

= {
∫
Ω
φ(ω)⟨F (ω), F (γ)⟩dµ(ω)}γ∈Ω.

Then V = T ∗T . Moreover, F is Riesz-type and T ∗ is surjective. Then by lemma 2.6, V is
adjointable and invertible operator and∥∥(T ∗T )−1

∥∥−1 ≤ V ≤ ∥T ∗∥2 ≤ B.

□

According to the Theorem 3.10, in the next corollary we show the relation between two
continuous Riesz bases for a Hilbert C∗-module U .

Corollary 3.13. Let F,G : Ω → U be two continuous Riesz bases for Hilbert C∗-module
U over a unital C∗-algebra A and TF , TG, SG be the pre-frame operator of F , the pre-frame
operator of G and the frame operator of G, respectively. Then there exists an invertible
operator K ∈ End∗A(U) such that G = SGK

∗F .

Proof. Let f ∈ U such that (TGT
∗
F )f = 0. Then TG((T

∗
F f)(ω)) = 0 for all ω ∈ Ω and∫

Ω⟨f, F (ω)⟩G(ω)dµ(ω) = 0.
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Since G is L2-independence, so ⟨f, F (ω)⟩ = 0 for all ω ∈ Ω and the completeness of
F implies that f = 0 and hence TGT

∗
F is injective. Moreover, T ∗

F and TG are surjective,
therefore TGT ∗

F is invertible.
Put K := (TGT

∗
F )

−1. Then for any f, g ∈ U ,

⟨f, g⟩ = ⟨K−1Kf, g⟩
= ⟨T ∗

FKf, T
∗
Gg⟩

=

∫
Ω
⟨Kf,F (ω)⟩⟨G(ω), g⟩dµ(ω)

=

∫
Ω
⟨f,K∗F (ω)⟩⟨G(ω), g⟩dµ(ω).

Thus K∗F is a dual of G. But G is a Riesz-type frame, then S−1
G G = K∗F and hence

G = SGK
∗F . □

Conclusion
In this paper, we have introduced a µ-complete Bessel mapping and a continuous Riesz

basis in Hilbert C∗-modules, by recalling some definitions and properties of continuous frames
in Hilbert C∗-modules. We have investigated the relation between a continuous Riesz basis
and an L2-independent Bessel mapping. Also, we have shown that a continuous Riesz basis
is a continuous exact frame and a continuous frame is a continuous Riesz basis if and only
if it is a Riesz-type frame. Finally, we have given the relation between two continuous Riesz
bases in Hilbert C∗-modules.
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