

Research Paper

CONTINUOUS RIESZ BASES IN HILBERT C*-MODULES

HADI GHASEMI AND TAYEBE LAL SHATERI*

ABSTRACT. The paper is devoted to continuous frames and continuous Riesz basis in Hilbert C^* -modules. We define a continuous Riesz basis in Hilbert C^* -modules, and investigate the relationship between a continuous Riesz basis and an L^2 -independent Bessel mapping. Also, we show that a continuous frame is a continuous Riesz basis if and only if it is a Riesz-type frame. Finally, we give the relation between two continuous Riesz bases in Hilbert C^* -modules.

MSC(2010): 42C15; 06D22.

Keywords: Hilbert C^* -module, Riesz basis, continuous frame, L^2 -independent, Riesz-type frame.

1. Introduction and Background

Frame theory is nowadays a fundamental research area in mathematics, computer science and engineering with many interesting applications in a variety of different fields. Frames were first introduced by Duffin and Schaeffer [7] in the context of nonharmonic fourier series. Then Daubecheies, Grassman and Mayer [6] reintroduced and developed them. The concept of a generalization of frames to a family indexed by some locally compact space endowed with a Radon measure was proposed by G. Kaiser [13] and independently by Ali, Antoine and Gazeau [2]. These frames are known as continuous frames. For a discussion of continuous frames, we refer to Refs.[16, 15]. Arefijamaal and et al. [4] introduced continuous Riesz bases and give some equivalent conditions for a continuous frame to be a continuous Riesz basis.

One reason to study frames in Hilbert C^* -modules is that there are some differences between Hilbert spaces and Hilbert C^* -modules. For example, in general, every bounded operator on a Hilbert space has an unique adjoint, while this fact not hold for bounded operators on a Hilbert C^* -module. Thus it is more difficult to make a discussion of the theory of Hilbert C^* -modules than that of Hilbert spaces in general. We refer the readers to [14], for more details on Hilbert C^* -modules. Frank and Larson [9] presented a general approach to the frame theory in Hilbert C^* -modules. The theory of frames has been extended from Hilbert spaces to Hilbert C^* -modules, see [1, 10, 12, 9, 17, 18].

The paper is organized as follows. First, we recall the basic definitions and some notations about Hilbert C^* -modules, and we also give some properties of them. In section 2, we recall the notion of continuous frames in Hilbert C^* -modules and their operators. In section 3, by defining a μ -complete Bessel mapping we give the definition of a continuous Riesz basis in Hilbert C^* -modules. We investigate the relation between a continuous Riesz basis and an

Date: Received: December 1, 2022, Accepted: June 5, 2023.

^{*}T.L. Shateri.

H. GHASEMI AND T.L. SHATERI

 L^2 -independent Bessel mapping. Also, we show that a continuous Riesz basis is a continuous exact frame and a continuous frame is a continuous Riesz basis if and only if it is a Riesz-type frame. Finally, we give the relation between two continuous Riesz bases in Hilbert C^* -modules.

2. Preliminaries

First, we recall some definitions and basic properties of Hilbert C^* -modules. We give only a brief introduction to the theory of Hilbert C^* -modules to make our explanations selfcontained. For comprehensive accounts, we refer to [14, 19]. Throughout this paper, \mathcal{A} shows a unital C^* -algebra.

Definition 2.1. A pre-Hilbert module over unital C^* -algebra \mathcal{A} is a complex vector space U which is also a left \mathcal{A} -module equipped with an \mathcal{A} -valued inner product $\langle ., . \rangle : U \times U \to \mathcal{A}$ which is \mathbb{C} -linear and \mathcal{A} -linear in its first variable and satisfies the following conditions:

(i)
$$\langle f, f \rangle \ge 0$$
,
(ii) $\langle f, f \rangle = 0$ iff $f = 0$,
(iii) $\langle f, g \rangle^* = \langle g, f \rangle$,
(iv) $\langle af, g \rangle = a \langle f, g \rangle$,
for all $f, g \in U$ and $a \in \mathcal{A}$.

A pre-Hilbert \mathcal{A} -module U is called *Hilbert* \mathcal{A} -module if U is complete with respect to the topology determined by the norm $||f|| = ||\langle f, f \rangle||^{\frac{1}{2}}$.

By [12, Example 2.46], if \mathcal{A} is an C^* -algebra, then it is a Hilbert \mathcal{A} -module with respect to the inner product

$$\langle a,b
angle=ab^*,\quad (a,b\in\mathcal{A}).$$

Example 2.2. [19, Page 237] Let $l^2(\mathcal{A})$ be the set of all sequences $\{a_n\}_{n\in\mathbb{N}}$ of elements of an C^* -algebra \mathcal{A} such that the series $\sum_{n=1}^{\infty} a_n a_n^*$ is convergent in \mathcal{A} . Then $l^2(\mathcal{A})$ is a Hilbert \mathcal{A} -module with respect to the pointwise operations and inner product defined by

$$\langle \{a_n\}_{n\in\mathbb{N}}, \{b_n\}_{n\in\mathbb{N}} \rangle = \sum_{n=1}^{\infty} a_n b_n^*.$$

In the following lemma the Cauchy-Schwartz inequality reconstructed in Hilbert C^* -modules.

Lemma 2.3. [19, Lemma 15.1.3] (*Cauchy-Schwartz inequality*) Let U be a Hilbert C^* -module over a unital C^* -algebra \mathcal{A} . Then

$$|\langle f,g\rangle||^2 \le ||\langle f,f\rangle|| \ ||\langle g,g\rangle||,$$

for all $f, g \in U$.

Definition 2.4. [14, Page 8] Let U and V be two Hilbert C^* -modules over a unital C^* -algebra \mathcal{A} . A map $T: U \to V$ is said to be *adjointable* if there exists a map $T^*: V \to U$ satisfying

$$\langle Tf,g\rangle = \langle f,T^*g\rangle$$

for all $f \in U, g \in V$. Such a map T^* is called the *adjoint* of T. By $End^*_{\mathcal{A}}(U)$ we denote the set of all adjointable maps on U.

It is surprising that an adjointable operator is automatically linear and bounded.

Lemma 2.5. [20, Lemma 1.1] Let U and V be two Hilbert C^{*}-modules over a unital C^{*}-algebra \mathcal{A} and $T \in End^*_{\mathcal{A}}(U,V)$ has closed range. Then T^{*} has closed range and

$$U = Ker(T) \oplus R(T^*), \quad V = Ker(T^*) \oplus R(T)$$

Lemma 2.6. [3, Lemma 0.1] Let U and V be two Hilbert C^{*}-modules over a unital C^{*}-algebra \mathcal{A} and $T \in End^*_{\mathcal{A}}(U, V)$. Then

(i) If T is injective and T has closed range, then the adjointable map T^*T is invertible and

$$||(T^*T)^{-1}||^{-1} \le T^*T \le ||T||^2$$

(ii) If T is surjective, then the adjointable map TT^* is invertible and

$$||(TT^*)^{-1}||^{-1} \le TT^* \le ||T||^2.$$

Now, we introduce continuous frames in Hilbert C^* -modules over a unital C^* -algebra \mathcal{A} , and then we give some results for these frames.

Let \mathcal{Y} be a Banach space, (\mathcal{X}, μ) a measure space, and $f : \mathcal{X} \to \mathcal{Y}$ a measurable function. The integral of the Banach-valued function f has been defined by Bochner and others. Most properties of this integral are similar to those of the integral of real-valued functions (see [8, 21]). Since every C^* -algebra and Hilbert C^* -module is a Banach space, hence we can use this integral in these spaces. In the following, we assume that \mathcal{A} is a unital C^* -algebra and U is a Hilbert C^* -module over \mathcal{A} and (Ω, μ) is a measure space.

Definition 2.7. [11] Let (Ω, μ) be a measure space and \mathcal{A} is a unital C^* -algebra. We define,

$$L^{2}(\Omega, \mathcal{A}) = \{ \varphi : \Omega \to \mathcal{A} ; \quad \int_{\Omega} \|\phi(\omega)(\varphi(\omega))^{*}\| d\mu(\omega) < \infty \}.$$

For any $\varphi, \psi \in L^2(\Omega, \mathcal{A})$, the inner product is defined by

$$\langle \varphi, \psi \rangle = \int_{\Omega} \langle \varphi(\omega), \psi(\omega) \rangle d\mu(\omega) = \int_{\Omega} \varphi(\omega) \psi(\omega)^* d\mu(\omega),$$

and the norm is defined by $\|\varphi\| = \|\langle \varphi, \varphi \rangle\|^{\frac{1}{2}}$. It was shown in [14] $L^2(\Omega, \mathcal{A})$ is a Hilbert \mathcal{A} -module.

Continuous frames for Hilbert \mathcal{A} -modules are defined as follows.

Definition 2.8. [10] A mapping $F : \Omega \to U$ is called a continuous frame for U if

- (i) F is weakly-measurable, i.e, for any $f \in U$, the mapping $\omega \longmapsto \langle f, F(\omega) \rangle$ is measurable on Ω .
- (ii) There exist constants A, B > 0 such that

(2.1)
$$A\langle f, f \rangle \leq \int_{\Omega} \langle f, F(\omega) \rangle \langle F(\omega), f \rangle d\mu(\omega) \leq B\langle f, f \rangle, \quad (f \in U).$$

The constants A, B are called *lower* and *upper* frame bounds, respectively. The mapping F is called *Bessel* if the right inequality in (2.1) holds and is called *tight* if A = B.

Definition 2.9. [11] A continuous frame $F : \Omega \to U$ is called *exact* if for every measurable subset $\Omega_1 \subseteq \Omega$ with $0 < \mu(\Omega_1) < \infty$, the mapping $F|_{\Omega \setminus \Omega_1}$ is not a continuous frame for U.

Example 2.10. Let $U = \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & b \end{pmatrix} : a, b \in \mathbb{C} \right\}$, and $\mathcal{A} = \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} : x, y \in \mathbb{C} \right\}$ which is an C^* -algebra. We define the inner product

$$\langle ., . \rangle : U \times U \to \mathcal{A}$$

 $(M, N) \longmapsto M(\overline{N})^t.$

This inner product makes U an C^* -module on \mathcal{A} . We consider a measure space $(\Omega = [0, 1], \mu)$ whose μ is the Lebesgue measure. Also $F : \Omega \to U$ defined by $F(\omega) = \begin{pmatrix} \sqrt{3}\omega & 0 & 0 \\ 0 & 0 & \sqrt{3}\omega \end{pmatrix}$, for any $\omega \in \Omega$. For each $f = \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \in U$, we have

or each
$$f = \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & b \end{pmatrix} \in U$$
, we have
$$\int_{[0,1]} \langle f, F(\omega) \rangle \langle F(\omega), f \rangle d\mu(\omega) = \int_{[0,1]} 3\omega^2 \begin{pmatrix} |a|^2 & 0 \\ 0 & |b|^2 \end{pmatrix} d\mu(\omega)$$
$$= \begin{pmatrix} |a|^2 & 0 \\ 0 & |b|^2 \end{pmatrix} = \langle f, f \rangle.$$

Therefore F is a continuous tight frame with bounds A = B = 1.

The following operators for Bessel mappings and continuous frames in Hilbert C^* -modules are defined in [11].

- Let $F: \Omega \to U$ be a Bessel mapping . Then
 - (i) The pre-frame operator or synthesis operator operator $T_F : L^2(\Omega, \mathcal{A}) \to U$ weakly defined by

(2.2)
$$\langle T_F \varphi, f \rangle = \int_{\Omega} \varphi(\omega) \langle F(\omega), f \rangle d\mu(\omega), \quad (f \in U).$$

(ii) The adjoit of T, called the analysis operator $T_F^*: U \to L^2(\Omega, \mathcal{A})$ is defined by

(2.3)
$$(T_F^*f)(\omega) = \langle f, F(\omega) \rangle, \quad (\omega \in \Omega).$$

The pre-frame operator is a well defined, surjective, adjointable \mathcal{A} -linear map and is bounded with $||T_F|| \leq \sqrt{B}$ and the analysis operator $T_F^* : U \to L^2(\Omega, A)$ is injective and has closed range [11].

If $F: \Omega \to U$ is a continuous frame for Hilbert C^* -module U. Then the frame operator $S_F: U \to U$ is weakly defined by

(2.4)
$$\langle S_F f, f \rangle = \int_{\Omega} \langle f, F(\omega) \rangle \langle F(\omega), f \rangle d\mu(\omega), \quad (f \in U)$$

In [11] we prove that the frame operator S_F is positive, adjointable, selfadjoit and invertible and the lower and the upper bounds of F are, respectively $||S_F^{-1}||^{-1}$ and $||T_F||^2$. Now we introduce the concept of the duals of continuous frames in Hilbert C^* -modules and give some important properties of continuous frames and their duals.

Definition 2.11. Let $F : \Omega \to U$ be a continuous Bessel mapping. A continuous Bessel mapping $G : \Omega \to U$ is called a *dual* for F if for every $f \in U$

(2.5)
$$f = \int_{\Omega} \langle f, G(\omega) \rangle F(\omega) d\mu(\omega),$$

or

(2.6)
$$\langle f,g\rangle = \int_{\Omega} \langle f,G(\omega)\rangle \langle F(\omega),g\rangle d\mu(\omega) \qquad (f,g\in U).$$

In this case (F, G) is called a *dual pair*. If T_F and T_G denote the pre-frame operators of F and G, respectively, then (2.6) is equivalent to $T_F T_G^* = I_U$. The condition

$$\langle f,g \rangle = \int_{\Omega} \langle f,G(\omega) \rangle \langle F(\omega),g \rangle d\mu(\omega) \qquad (f,g \in U),$$

is equivalent

$$\langle f,g\rangle = \int_{\Omega} \langle f,F(\omega)\rangle \langle G(\omega),g\rangle d\mu(\omega) \qquad (f,g\in U)$$

because $T_F T_G^* = I_U$ if and only if $T_G T_F^* = I_U$. Also, by reconstruction formula we have

$$f = S_F^{-1} S_F f = S^{-1} \int_{\Omega} \langle f, F(\omega) \rangle F(\omega) d\mu(\omega) = \int_{\Omega} \langle f, F(\omega) \rangle S_F^{-1} F(\omega) d\mu(\omega),$$

and

$$f = S_F S_F^{-1} f = \int_{\Omega} \langle S_F^{-1} f, F(\omega) \rangle F(\omega) d\mu(\omega) = \int_{\Omega} \langle f, S_F^{-1} F(\omega) \rangle F(\omega) d\mu(\omega).$$

Then $S_F^{-1}F$ is a dual for F, which is called *canonical dual*.

3. Main Results

In this section, we introduce the concept of continuous Riesz bases in Hilbert C^* -modules and give some important properties of them. First, we give the notion of a Riesz-type frame that is introduced in [11].

Definition 3.1. Let $F : \Omega \to U$ be a continuous frame for Hilbert C^* -module U. If F has only one dual, we call F a *Riesz-type frame*.

Theorem 3.2. [11, Theorem 3.4] Let $F : \Omega \to U$ be a continuous frame for Hilbert C^* -module U over a unital C^* -algebra \mathcal{A} . Then F is a Riesz-type frame if and only if the analysis operator $T_F^* : U \to L^2(\Omega, \mathcal{A})$ is surjective.

Definition 3.3. Let U be a Hilbert C^{*}-module over a unital C^{*}-algebra \mathcal{A} . A Bessel mapping $F: \Omega \to U$ is called a μ -complete if

$$\{f \in U; \quad \langle f, F(\omega) \rangle = 0 \quad a.e. \ [\mu]\} = \{0\}.$$

 $\langle f, F(\omega) \rangle = 0$ a.e. $[\mu]$ means that $\mu\{f; \langle f, F(\omega) \rangle \neq 0\} = 0$. Now, we define a continuous Riesz basis for Hilbert C^{*}-modules. Recall that $|a|^2 = a^*a$, for any element a in C^{*}-algebra \mathcal{A} .

Definition 3.4. Let U be a Hilbert C^* -module over a unital C^* -algebra \mathcal{A} . A weaklymeasurable mapping $F: \Omega \to U$ is called a *continuous Riesz basis* for Hilbert C^* -module U, if the following conditions are satisfied.

- (i) F is μ -complete.
- (ii) There are two constants A, B > 0 such that

$$(3.1) A \left\| \int_{\Omega_1} |\varphi(\omega)^*|^2 d\mu(\omega) \right\|^{\frac{1}{2}} \le \left\| \int_{\Omega_1} \varphi(\omega) F(\omega) d\mu(\omega) \right\| \le B \left\| \int_{\Omega_1} |\varphi(\omega)^*|^2 d\mu(\omega) \right\|^{\frac{1}{2}},$$

for every $\varphi \in L^2(\Omega, \mathcal{A})$ and measurable subset $\Omega_1 \subseteq \Omega$ with $\mu(\Omega_1) < +\infty$.

Remark 3.5. Let $F: \Omega \to U$ be a continuous Riesz basis for Hilbert C^* -module U. Define

$$T: L^{2}(\Omega, \mathcal{A}) \longrightarrow U$$
$$\varphi \longmapsto \int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega)$$

Then T is well-defined, adjointable map with $T^*f = \{\langle f, F(\omega) \rangle\}_{\omega \in \Omega}$ and bounded such that $A \|\varphi\|^2 \le \|T\varphi\|^2 \le B \|\varphi\|^2.$

Hence F is a continuous Bessel mapping. Also by μ -completeness of F we have

$$Ker(T^*) = \{ f \in U \ ; \ \langle f, F(\omega) \rangle = 0 \quad \forall \omega \in \Omega \} = \{ 0 \},$$

so by lemma 2.5, $R(T) = Ker(T^*)^{\perp} = U$. Then T is surjective and by [11, Theorem 2.15], F is a continuous frame for U.

Definition 3.6. Let U be a Hilbert C^{*}-module over a unital C^{*}-algebra \mathcal{A} . A Bessel mapping $F: \Omega \to U$ is said to be L^2 -independent if for $\varphi \in L^2(\Omega, \mathcal{A}), \int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega) = 0$ implies that $\varphi(\omega) = 0$, for each $\omega \in \Omega$.

We give the following result.

Theorem 3.7. Let $F : \Omega \to U$ be a continuous frame for Hilbert C^* -module U over a unital C^* -algebra \mathcal{A} with bounds A, B > 0. Then the following are equivalent

- (i) F is a continuous Riesz basis.
- (ii) F is μ -complete and L^2 -independent.

Proof. (i) \implies (ii) Let F be a continuous Riesz basis and $\int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega) = 0$ for some $\varphi \in L^2(\Omega, \mathcal{A})$. Since

$$A\left\|\int_{\Omega}|\varphi(\omega)^*|^2d\mu(\omega)\right\| \le \left\|\int_{\Omega}\varphi(\omega)F(\omega)d\mu(\omega)\right\|^2 = 0,$$

 \mathbf{SO}

$$\langle \{\varphi(\omega)\}_{\omega\in\Omega}, \{\varphi(\omega)\}_{\omega\in\Omega} \rangle = \int_{\Omega} |\varphi(\omega)^*|^2 d\mu(\omega) = 0.$$

Hence $\{\varphi(\omega)\}_{\omega\in\Omega} = 0$ and $\varphi = 0$ i.e. F is L²-independent.

(*ii*) \implies (*i*) Let F be a L^2 -independent continuous frame for Hilbert C^* -module U with bounds A, B > 0. For $\varphi \in L^2(\Omega, \mathcal{A})$ and measurable subset $\Omega_1 \subseteq \Omega$ with $\mu(\Omega_1) < +\infty$, put $f = \int_{\Omega_1} \varphi(\omega) F(\omega) d\mu(\omega)$. Then we have,

$$f = \int_{\Omega_1} \varphi(\omega) F(\omega) d\mu(\omega) = \int_{\Omega} \varphi(\omega) \chi_{\Omega_1}(\omega) F(\omega) d\mu(\omega)$$

Also $f = \int_{\Omega} \langle f, S^{-1}F(\omega) \rangle F(\omega) d\mu(\omega)$ where S is the continuous frame operator of F. Since F is L^2 -independent, so

$$\varphi(\omega)\chi_{\Omega_1}(\omega) = \langle f, S^{-1}F(\omega) \rangle, \qquad (\omega \in \Omega).$$

and by [11, Corollary 2.11],

$$B^{-1}\langle f, f \rangle \le \langle S^{-1}f, f \rangle \le A^{-1}\langle f, f \rangle,$$

and so

$$A\|\langle S^{-1}f,f\rangle\| \le \|\langle f,f\rangle\| \le B\|\langle S^{-1}f,f\rangle\|.$$

Now we show that $\langle S^{-1}f, f \rangle = \int_{\Omega_1} |\varphi(\omega)^*|^2 d\mu(\omega).$

$$\begin{split} \langle S^{-1}f,f\rangle &= \langle f,S^{-1}f\rangle \\ &= \int_{\Omega_1} \langle f,\varphi(\omega)S^{-1}F(\omega)\rangle d\mu(\omega) \\ &= \int_{\Omega_1} \langle f,S^{-1}F(\omega)\rangle\varphi(\omega)^*d\mu(\omega) \\ &= \int_{\Omega_1} \varphi(\omega)\varphi(\omega)^*d\mu(\omega) = \int_{\Omega_1} |\varphi(\omega)^*|^2 d\mu(\omega). \end{split}$$

Therefore,

$$A\left\|\int_{\Omega_1} |\varphi(\omega)^*|^2 d\mu(\omega)\right\| \le \left\|\int_{\Omega_1} \varphi(\omega) F(\omega) d\mu(\omega)\right\|^2 \le B\left\|\int_{\Omega_1} |\varphi(\omega)^*|^2 d\mu(\omega)\right\|,$$

i.e. F is a continuous Riesz basis for U with bounds A, B.

Theorem 3.8. Let $F: \Omega \to U$ be a continuous frame for Hilbert C^* -module U over a unital C^* -algebra \mathcal{A} . If F is a continuous Riesz basis for U, then it is a continuous exact frame.

Proof. Let $\Omega_1 \subseteq \Omega$ be a measurable subset of Ω with $0 < \mu(\Omega_1) < \infty$. For $\varphi = \chi_{\Omega_1} \in L^2(\Omega, \mathcal{A})$ we have,

$$\|\int_{\Omega_1} F(\omega)d\mu(\omega)\|^2 = \|\int_{\Omega_1} \chi_{\Omega_1}(\omega)F(\omega)d\mu(\omega)\|^2$$
$$\geq A\|\int_{\Omega_1} |\chi_{\Omega_1}(\omega)|^2 d\mu(\omega)\|$$
$$= A\|\mu(\Omega_1)\| > 0.$$

Hence $\int_{\Omega_1} F(\omega) d\mu(\omega) \neq 0$. Now suppose that $F : \Omega \setminus \Omega_1 \to U$ is a continuous frame for U. Then by completeness of $F \mid_{\Omega \setminus \Omega_1}$ there exists $\varphi_0 \in L^2(\Omega \setminus \Omega_1, \mathcal{A})$ such that

$$\int_{\Omega_1} F(\omega) d\mu(\omega) = \int_{\Omega \setminus \Omega_1} \varphi_0(\omega) F(\omega) d\mu(\omega).$$

Define $\varphi: \Omega \to A$ where

$$\varphi(\omega) = \begin{cases} \varphi_0(\omega) & \omega \in \Omega \setminus \Omega_1 \\ 1 & \omega \in \Omega_1. \end{cases}$$

Then $\varphi \in L^2(\Omega, \mathcal{A})$ and

$$\int_{\Omega} \chi_{\Omega_1}(\omega) F(\omega) d\mu(\omega) = \int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega),$$

so $\int_{\Omega} (\varphi - \chi_{\Omega_1})(\omega) F(\omega) d\mu(\omega) = 0$. Hence L^2 -independent shows that $\varphi = \chi_{\Omega_1}$ and so $\varphi_0 = 0$. Therefore

$$\int_{\Omega_1} F(\omega) d\mu(\omega) = \int_{\Omega \setminus \Omega_1} \varphi_0(\omega) F(\omega) d\mu(\omega) = 0,$$

which is a contradiction.

85

Proposition 3.9. Let $F : \Omega \to U$ be a continuous Bessel mapping for Hilbert C^* -module U over a unital C^* -algebra \mathcal{A} with pre-frame operator T. Suppose that F is μ -complete and the mapping

$$V: L^{2}(\Omega, \mathcal{A}) \longrightarrow L^{2}(\Omega, \mathcal{A})$$
$$\varphi \longmapsto \int_{\Omega} \varphi(\omega) \langle F(\omega), F(.) \rangle d\mu(\omega)$$

defines a bounded, adjointable and invertible operator. Then F is a continuous Riesz basis for U.

Proof. Since F is Bessel, so the pre-frame operator T is well-defined and bounded and adjointable with $T^*f = \{\langle f, F(\omega) \rangle\}_{\omega \in \Omega}$ for $f \in U$. Also $T^*T = V$, because

$$\begin{split} (T^*T)(\varphi) &= T^*(\int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega)) \\ &= \{ \langle \int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega), F(\gamma) \rangle \}_{\gamma \in \Omega} \\ &= \{ \int_{\Omega} \varphi(\omega) \langle F(\omega), F(\gamma) \rangle d\mu(\omega) \}_{\gamma \in \Omega} \end{split}$$

Since T is bounded, so there exist B > 0 such that $||T\varphi||^2 \le B||\varphi||^2$ i.e.

$$\|\int_{\Omega}\varphi(\omega)F(\omega)d\mu(\omega)\|^{2} \leq B\|\int_{\Omega}|\varphi(\omega)^{*}|^{2}d\mu(\omega)\|.$$

Since T^*T is positive, so

$$\begin{split} \left\| \int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega) \right\|^2 &= \|T\varphi\|^2 \\ &= \|\langle T^*T\varphi, \varphi \rangle \| \\ &= \left\| \langle (T^*T)^{\frac{1}{2}}\varphi, (T^*T)^{\frac{1}{2}}\varphi \rangle \right| \\ &= \left\| (T^*T)^{\frac{1}{2}}\varphi \right\|^2 \\ &\geq \left\| (T^*T)^{\frac{-1}{2}} \right\|^{-2} \|\varphi\|^2 \,. \end{split}$$

Therefore F is continuous Riesz basis with lower and upper bounds $\left\| (T^*T)^{\frac{-1}{2}} \right\|^{-2}$ and B, respectively.

Theorem 3.10. Let $F : \Omega \to U$ be a continuous frame for Hilbert C^* -module U over a unital C^* -algebra \mathcal{A} with pre-frame operator operator T. Then F is a continuous Riesz basis for U if and only if F is a Riesz-type frame.

Proof. (\Longrightarrow) Let $F_1 \neq F_2$ be two duals of F. Then for each $f \in U$,

$$\int_{\Omega} \langle f, F_1(\omega) - F_2(\omega) \rangle F(\omega) d\mu(\omega) = \int_{\Omega} \langle f, F_1(\omega) \rangle F(\omega) d\mu(\omega) - \int_{\Omega} \langle f, F_2(\omega) \rangle F(\omega) d\mu(\omega)$$

= $f - f = 0.$

Since F is continuous Riesz basis, so is L^2 -independent and

$$\langle f, F_1(\omega) - F_2(\omega) \rangle = 0 \implies \langle f, F_1(\omega) \rangle = \langle f, F_2(\omega) \rangle \quad (\omega \in \Omega).$$

Therefore $F_1 = F_2$.

(\Leftarrow) Let F be Riesz-type frame and $\varphi \in L^2(\Omega, \mathcal{A})$ such that $\int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega) = 0$. Since F is Riesz-type, so $R(T^*) = L^2(\Omega, \mathcal{A})$. Also $L^2(\Omega, \mathcal{A}) = Ker(T) \oplus R(T^*)$. Then

$$\varphi \in Ker(T) = R(T^*)^{\perp} = \{0\},\$$

then $\varphi = 0$ and so F is L²-independent. Therefore F is a continuous Riesz basis.

Corollary 3.11. Let $F : \Omega \to U$ be a continuous frame for Hilbert C^* -module U over a unital C^* -algebra \mathcal{A} . If F is a Riesz-type frame, then it is a continuous exact frame.

Due to the Theorem 3.10, the converse of the Proposition 3.9 holds as follows.

Corollary 3.12. Let $F : \Omega \to U$ be a continuous Riesz basis for Hilbert C^* -module U over a unital C^* -algebra \mathcal{A} with bounds A, B > 0 and pre-frame operator T. Then F is μ -complete and the mapping

$$V: L^{2}(\Omega, \mathcal{A}) \longrightarrow L^{2}(\Omega, \mathcal{A})$$
$$\varphi \longmapsto \int_{\Omega} \varphi(\omega) \langle F(\omega), F(.) \rangle d\mu(\omega)$$

defines a bounded, adjointable and invertible operator.

Proof. Let F be a continuous Riesz basis for U with bounds A, B > 0. Then the pre-frame operator T satisfies $||T|| \leq \sqrt{B}$. Also,

$$\begin{split} (T^*T)(\varphi) &= T^*(\int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega)) \\ &= \{ \langle \int_{\Omega} \varphi(\omega) F(\omega) d\mu(\omega), F(\gamma) \rangle \}_{\gamma \in \Omega} \\ &= \{ \int_{\Omega} \varphi(\omega) \langle F(\omega), F(\gamma) \rangle d\mu(\omega) \}_{\gamma \in \Omega}. \end{split}$$

Then $V = T^*T$. Moreover, F is Riesz-type and T^* is surjective. Then by lemma 2.6, V is adjointable and invertible operator and

$$\left\| (T^*T)^{-1} \right\|^{-1} \le V \le \|T^*\|^2 \le B.$$

According to the Theorem 3.10, in the next corollary we show the relation between two continuous Riesz bases for a Hilbert C^* -module U.

Corollary 3.13. Let $F, G : \Omega \to U$ be two continuous Riesz bases for Hilbert C^* -module U over a unital C^* -algebra \mathcal{A} and T_F, T_G, S_G be the pre-frame operator of F, the pre-frame operator of G and the frame operator of G, respectively. Then there exists an invertible operator $K \in End^*_{\mathcal{A}}(U)$ such that $G = S_G K^* F$.

Proof. Let $f \in U$ such that $(T_G T_F^*) f = 0$. Then $T_G((T_F^* f)(\omega)) = 0$ for all $\omega \in \Omega$ and $\int_{\Omega} \langle f, F(\omega) \rangle G(\omega) d\mu(\omega) = 0$.

Since G is L^2 -independence, so $\langle f, F(\omega) \rangle = 0$ for all $\omega \in \Omega$ and the completeness of F implies that f = 0 and hence $T_G T_F^*$ is injective. Moreover, T_F^* and T_G are surjective, therefore $T_G T_F^*$ is invertible.

Put $K := (T_G T_F^*)^{-1}$. Then for any $f, g \in U$,

<

$$\begin{split} f,g \rangle &= \langle K^{-1}Kf,g \rangle \\ &= \langle T_F^*Kf,T_G^*g \rangle \\ &= \int_{\Omega} \langle Kf,F(\omega) \rangle \langle G(\omega),g \rangle d\mu(\omega) \\ &= \int_{\Omega} \langle f,K^*F(\omega) \rangle \langle G(\omega),g \rangle d\mu(\omega). \end{split}$$

Thus K^*F is a dual of G. But G is a Riesz-type frame, then $S_G^{-1}G = K^*F$ and hence $G = S_G K^*F$.

Conclusion

In this paper, we have introduced a μ -complete Bessel mapping and a continuous Riesz basis in Hilbert C^* -modules, by recalling some definitions and properties of continuous frames in Hilbert C^* -modules. We have investigated the relation between a continuous Riesz basis and an L^2 -independent Bessel mapping. Also, we have shown that a continuous Riesz basis is a continuous exact frame and a continuous frame is a continuous Riesz basis if and only if it is a Riesz-type frame. Finally, we have given the relation between two continuous Riesz bases in Hilbert C^* -modules.

References

- L. Arambaic, On frames for countably generated Hilbert C^{*}-modules. Proc. Amer. Math. Soc., 135: 479–478, (2007).
- S.T. Ali, J.-P. Antoine and J.-P. Gazeau, Continuous frames in Hilbert space. Annals of Physics, 222: 1-37, 1993.
- [3] A. Alijani and M. Dehghan, *-frames in Hilbert C*-modules. UPB Scientific Bulletin, Series A, 73, 2011.
- [4] A. A. Arefijamaal, R. A. Kamyabi Gol, R. Raisi Tousi and N. Tavallaei, A new approach to continuous Riesz bases. J. Sci. Iran, 24(1): 63–69, 2013.
- [5] O. Christensen, An introduction to frames and Riesz bases. Birkhauser, Boston, 2016.
- [6] I. Daubechies, A. Grassman and Y. Meyer, Painless nonothogonal expanisions. J. Math. Phys., 27: 1271– 1283, 1986.
- [7] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72: 341–366, 1952.
- [8] N. Dunford and J.T. Schwartz, Linear Operators. I. General Theory, vol. 7 of Pure and Applied Mathematics, Interscience, New York, NY, USA, 1958.
- M. Frank and D. R. Larson, Frames in Hilbert C*-modules and C*-algebras. J. Operator Theory, 48: 273–314. 2002.
- [10] H. Ghasemi and T.L. Shateri, Continuous *-controlled frames in Hilbert C*-modules. Caspian J. Math. Scien., 11(2): 448–460, 2022.
- [11] H. Ghasemi and T.L. Shateri, On continuous frames in Hilbert C^* -Modules, preprint (Sahan Commun. Math. Anal.)
- [12] W. Jing, *Frames in Hilbert C^{*}-modules.* Ph.D. Thesis, University of Central Florida Orlando, Florida, 2006.
- [13] G. Kaiser, A Friendly Guide to Wavelets. Birkha" user, Boston, 1994.
- [14] E.C. Lance, Hilbert C^{*}-Modules: A Toolkit for Operator Algebraist. 144 pages, vol. 210 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 1995.

- [15] A. Rahimi, Z. Darvishi and B. Daraby, Dual pair and approximate dual for continuous frames in Hilbert spaces. Math. Rep., 21(2): 173–191, 2019.
- [16] A. Rahimi, A. Najati and Y. N. Dehghan, Continuous frames in Hilbert spaces. Methods Func. Anal. Topol., 12: 170–182, 2006.
- [17] M. Rashidi-Kouchi and A. Rahimi, On controlled frames in Hilbert C*-modules. Int. J. Wavelets Multiresolut. Inf. Process., 15(4), 2017, 1750038 (15 pages), DOI: 10.1142/S0219691317500382.
- [18] T.L. Shateri, *-Controlled frames in Hilbert C*-modules. Inter. J. Wavelets Multiresolut. Inf. Process., 19(03), 2021, DOI: 10.1142/S0219691320500800.
- [19] N.E. Wegge-Olsen, K-theory and C*-algebras: a friendly approach. Oxford University Press, 1993.
- [20] Q. Xu, L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C^* -modules. Linear algebra and its applications, **428**(4): 992–1000, 2008.
- [21] K. Yosida, Functional Analysis. Springer-Verlag Berlin Heidelberg, Springer, Berlin, Germany, 6th edition, 1980.

(Hadi Ghasemi) DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, HAKIM SABZEVARI UNIVER-SITY UNIVERSITY, SABZEVAR, IRAN.

Email address: h.ghasemi@hsu.ac.ir

(Tayebe Lal Shateri) DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, HAKIM SABZEVARI UNIVERSITY UNIVERSITY, SABZEVAR, IRAN.

Email address: t.shateri@hsu.ac.ir; t.shateri@gmail.com