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CONTINUOUS RIESZ BASES IN HILBERT C*-MODULES
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ABSTRACT. The paper is devoted to continuous frames and continuous Riesz basis in Hilbert
C™-modules. We define a continuous Riesz basis in Hilbert C*-modules, and investigate the
relationship between a continuous Riesz basis and an L*-independent Bessel mapping. Also,
we show that a continuous frame is a continuous Riesz basis if and only if it is a Riesz-
type frame. Finally, we give the relation between two continuous Riesz bases in Hilbert
C™-modules.
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1. Introduction and Background

Frame theory is nowadays a fundamental research area in mathematics, computer science
and engineering with many interesting applications in a variety of different fields. Frames
were first introduced by Duffin and Schaeffer [7] in the context of nonharmonic fourier series.
Then Daubecheies, Grassman and Mayer [(] reintroduced and developed them. The concept
of a generalization of frames to a family indexed by some locally compact space endowed with
a Radon measure was proposed by G. Kaiser [13] and independently by Ali, Antoine and
Gazeau [2]. These frames are known as continuous frames. For a discussion of continuous
frames, we refer to Refs.[10, 15]. Arefijamaal and et al. [1] introduced continuous Riesz bases
and give some equivalent conditions for a continuous frame to be a continuous Riesz basis.

One reason to study frames in Hilbert C*-modules is that there are some differences between
Hilbert spaces and Hilbert C*-modules. For example, in general, every bounded operator on
a Hilbert space has an unique adjoint, while this fact not hold for bounded operators on a
Hilbert C*-module. Thus it is more difficult to make a discussion of the theory of Hilbert
C*-modules than that of Hilbert spaces in general. We refer the readers to [14], for more
details on Hilbert C*-modules. Frank and Larson [J] presented a general approach to the
frame theory in Hilbert C*-modules. The theory of frames has been extended from Hilbert
spaces to Hilbert C*-modules, see [1, 10, 12, 9, 17, 18].

The paper is organized as follows. First, we recall the basic definitions and some notations
about Hilbert C*-modules, and we also give some properties of them. In section 2, we recall
the notion of continuous frames in Hilbert C*-modules and their operators. In section 3, by
defining a u-complete Bessel mapping we give the definition of a continuous Riesz basis in
Hilbert C*-modules. We investigate the relation between a continuous Riesz basis and an

Date: Received: December 1, 2022, Accepted: June 5, 2023.
*T.L. Shateri.
79



80 H. GHASEMI AND T.L. SHATERI

L?-independent Bessel mapping. Also, we show that a continuous Riesz basis is a continuous
exact frame and a continuous frame is a continuous Riesz basis if and only if it is a Riesz-
type frame. Finally, we give the relation between two continuous Riesz bases in Hilbert
C*-modules.

2. Preliminaries

First, we recall some definitions and basic properties of Hilbert C*-modules. We give
only a brief introduction to the theory of Hilbert C*-modules to make our explanations self-
contained. For comprehensive accounts, we refer to [14, 19]. Throughout this paper, A shows
a unital C*-algebra.

Definition 2.1. A pre-Hilbert module over unital C*-algebra A is a complex vector space U
which is also a left .A-module equipped with an A-valued inner product (.,.) : U x U — A
which is C-linear and A-linear in its first variable and satisfies the following conditions:

(1) {f. f) =

W 0w f—o,

(iii) (f,9)" = (g, f),

(IV) <afa > - (I<f, ))
for all f,g € U and a € A.

A pre-Hilbert A-module U is called Hilbert A-module if U is complete with respect to the

topology determined by the norm || f|| = ||{/, f>||%
By [12, Example 2.46], if A is an C*-algebra, then it is a Hilbert .A-module with respect
to the inner product

(a,b)y = ab*, (a,be A).

Example 2.2. [19, Page 237] Let 1?(A) be the set of all sequences {a, }nen of elements of
an C*-algebra A such that the series > o | ana;, is convergent in A. Then [2(A) is a Hilbert
A-module with respect to the pointwise operations and inner product defined by

<{an}n€N7 {bn}n€N> = Z anb;';.
n=1

In the following lemma the Cauchy-Schwartz inequality reconstructed in Hilbert C*-modules.

Lemma 2.3. [19, Lemma 15.1.3] (Cauchy-Schwartz inequality) Let U be a Hilbert C*-
module over a unital C*-algebra A. Then

1CE P < I P K 91
forall f,geU.

Definition 2.4. [11, Page 8] Let U and V' be two Hilbert C*-modules over a unital C*-algebra
A. Amap T :U — V is said to be adjointable if there exists a map T* : V — U satisfying

(Tf,9)=(f,T"g),

for all f € U,g € V. Such a map T is called the adjoint of T. By End’(U) we denote the
set, of all adjointable maps on U.

It is surprising that an adjointable operator is automatically linear and bounded.
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Lemma 2.5. [20, Lemma 1.1] Let U and V' be two Hilbert C*-modules over a unital C*-algebra
A and T € End’(U,V) has closed range. Then T* has closed range and

U=Ker(T)®R(T*), V=Ker(T*)® R(T)

Lemma 2.6. [3, Lemma 0.1] Let U and V' be two Hilbert C*-modules over a unital C*-algebra
A and T € End(U,V). Then

(i) If T is injective and T has closed range, then the adjointable map T*T is invertible
and

()~ < T*T < ||T.
(ii) If T is surjective, then the adjointable map TT* is invertible and
(T~ < TT < |7

Now, we introduce continuous frames in Hilbert C*-modules over a unital C*-algebra A,
and then we give some results for these frames.

Let Y be a Banach space, (X, ;) a measure space, and f : X — ) a measurable function.
The integral of the Banach-valued function f has been defined by Bochner and others. Most
properties of this integral are similar to those of the integral of real-valued functions (see
[8, 21]). Since every C*-algebra and Hilbert C*-module is a Banach space, hence we can use
this integral in these spaces. In the following, we assume that A is a unital C*-algebra and
U is a Hilbert C*-module over A and (2, 1) is a measure space.

Definition 2.7. [11] Let (9, 1) be a measure space and A is a unital C*-algebra. We define,
QA = (o0 Ai [ o) ew)) ] duw) < .
For any ¢, € L?(£2,.A), the inner product is defined by
(1) = [ (o) w(du) = [ plo)pe)dute),

and the norm is defined by |¢| = H(cp,cp)H% It was shown in [14] L?(2,.A) is a Hilbert
A-module.

Continuous frames for Hilbert A-modules are defined as follows.

Definition 2.8. [10] A mapping F': Q — U is called a continuous frame for U if

(i) F is weakly-measurable, i.e, for any f € U, the mapping w — (f, F/(w)) is measurable
on 2.
(ii) There exist constants A, B > 0 such that

(2.1) AL f) < /Q (. F@)(F). f)duw) < B, f), (feU).

The constants A, B are called lower and upper frame bounds, respectively. The mapping
F is called Bessel if the right inequality in (2.1) holds and is called tight if A = B.

Definition 2.9. [11] A continuous frame F' : Q — U is called ezact if for every measurable
subset {1 C Q with 0 < p(Q1) < oo, the mapping F|q\q, is not a continuous frame for U.
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Example 2.10. Let U = { <g 8 2) ca,b e (C}, and A = { <g 2) tx,Y € (C} which is

an C*-algebra. We define the inner product
(L):UxU — A
(M,N)— M(N).
This inner product makes U an C*-module on 4. We consider a measure space (2 = [0, 1], 1)

whose p is the Lebesgue measure. Also F': QQ — U defined by F(w) = (ng 8 \/O§w>’ for

any w € (.
For each f = (g 8 2) € U, we have
_ 2 (a0 >
[ o renwe. nae) = [ s (L) aute)

(5 )=

Therefore F' is a continuous tight frame with bounds A = B = 1.

The following operators for Bessel mappings and continuous frames in Hilbert C*-modules
are defined in [11].
Let F: Q2 — U be a Bessel mapping . Then

(i) The pre-frame operator or synthesis operator operator Tr : L?(Q, A) — U weakly

defined by
(2:2) Trp. ) = [ PFE).Nduw). (D),
(i) The adjoit of T, called the analysis operator T% : U — L*(Q, A) is defined by
(2.3 (TENW) = (fF@), (e Q).

The pre-frame operator is a well defined, surjective, adjointable A-linear map and is bounded
with ||Tr| < VB and the analysis operator T3 : U — L?(Q, A) is injective and has closed
range [11].

If F:Q — U is a continuous frame for Hilbert C*-module U. Then the frame operator
Sr:U — U is weakly defined by

(2.4) (Spf, f) = /Q (f, F@)(Fw), fdu(w), (f €U).

In [11] we prove that the frame operator Sg is positive, adjointable, selfadjoit and invertible
and the lower and the upper bounds of F are, respectively ||Sz'||~! and ||Tr||2. Now we
introduce the concept of the duals of continuous frames in Hilbert C*-modules and give some
important properties of continuous frames and their duals.

Definition 2.11. Let F :  — U be a continuous Bessel mapping. A continuous Bessel
mapping G : 2 — U is called a dual for F' if for every f € U

(2.5) f= /ﬂ (f, G(w)) F(w)dp(w),
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(2.6) (f,q) = /Q (G Fw).g)duw)  (f.ge D).

In this case (F,G) is called a dual pair. If Tr and T denote the pre-frame operators of F'
and G, respectively, then (2.6) is equivalent to TpTg = Iy. The condition

(fq) = /Q G F).g)duw)  (f.g€ D),
is equivalent
(f,q) = /Q (f, F@)Cw). g)duw)  (f.g€T),

because TrTy = Iy if and only if ToTy = Iy.
Also, by reconstruction formula we have

f=8518ef =57 [ (LF@) @A) = [ (7F@)S; F)dute),
Q 0
and
f=5pSplf = /Q (SpAF. F (@) F(w)dpw) = /Q (f, SEAF (@) F(w)du(w).
Then S;lF is a dual for F', which is called canonical dual.

3. Main Results

In this section, we introduce the concept of continuous Riesz bases in Hilbert C*-modules
and give some important properties of them. First, we give the notion of a Riesz-type frame
that is introduced in [11].

Definition 3.1. Let F' : Q — U be a continuous frame for Hilbert C*-module U. If F' has
only one dual, we call F' a Riesz-type frame.

Theorem 3.2. [11, Theorem 3.4] Let F' : Q — U be a continuous frame for Hilbert C*-module
U over a unital C*-algebra A. Then F is a Riesz-type frame if and only if the analysis operator
Tk : U — L*(Q,.A) is surjective.

Definition 3.3. Let U be a Hilbert C*-module over a unital C*-algebra A. A Bessel mapping
F :Q — U is called a u-complete if

{fet; (f,Fw)=0 ae [u}={0}.

(f,F(w)) =0 a.e. [p] means that u{f; (f, F(w)) # 0} =0.
Now, we define a continuous Riesz basis for Hilbert C*-modules. Recall that |a|? = a*a, for

any element a in C*-algebra A.

Definition 3.4. Let U be a Hilbert C*-module over a unital C*-algebra A. A weakly-
measurable mapping F : 0 — U is called a continuous Riesz basis for Hilbert C*-module U,
if the following conditions are satisfied.

(i) F is p-complete.

(ii) There are two constants A, B > 0 such that

(3.1) A\ e ‘ |so<w>*|2du<w>H2 |

/ () Pdu(w)
Q

/| @(w)F(W)du(w)H <B \

Q
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for every ¢ € L?(9, A) and measurable subset ; C Q with u(€;) < +oo.
Remark 3.5. Let F': Q2 — U be a continuous Riesz basis for Hilbert C*-module U. Define
T:L*Q,A) — U

o | o) P)due)
Then T is well-defined, adjointable map with T*f = {(f, F(w)) }weq and bounded such that
Allel? < ITel® < Blle|*.
Hence F' is a continuous Bessel mapping. Also by p-completeness of F' we have
Ker(T*) = {f €U ; {f,F(w)) =0 Yw e Q} = {0},

so by lemma 2.5, R(T) = Ker(T*)* = U. Then T is surjective and by [I 1, Theorem 2.15], F
is a continuous frame for U.

Definition 3.6. Let U be a Hilbert C*-module over a unital C*-algebra A. A Bessel mapping
F :Q — U is said to be L?-independent if for ¢ € L*(Q, A), [, ¢(w)F(w)du(w) = 0 implies
that ¢(w) = 0, for each w € €.

We give the following result.
Theorem 3.7. Let F: Q) — U be a continuous frame for Hilbert C*-module U over a unital
C*-algebra A with bounds A, B > 0. Then the following are equivalent
(i) F is a continuous Riesz basis.

(ii) F is u-complete and L?-independent.

Proof. (i) = (ii) Let F be a continuous Riesz basis and [, p(w)F(w)du(w) = 0 for some
¢ € L?(9, A). Since
A| [ ot Pauto| <

2
:O,

/wwwwmmm
Q

«ﬂmhmxwmhmwaémwmwmmzo

Hence {¢(w)}weq = 0 and ¢ = 0 i.e. F is L%-independent.

(i) = (i) Let F be a L%independent continuous frame for Hilbert C*-module U with
bounds A, B > 0. For ¢ € L?(f,.A) and measurable subset Q1 C Q with () < +oo, put
f=Jq, p(w)F(w)dpu(w). Then we have,

F= [ P @) = [ ple)xa,@)FE)duw),
1
Also f = [o(f, ST'F(w))F(w)du(w) where S is the continuous frame operator of F.
Since F' is L?-independent, so

pwixa,(w) = (f,STIFW)), (we)
and by [11, Corollary 2.11],

BTN f) < (STU ) S ATHE ),
and so

AISTUE AN < I A< BISTH DI
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Now we show that (S, f) = [ ()" Pdpu(w).
(S7U ) = (5L
-/ (. 0(e)S ™ F @) du)

_ /Q (f, ST F (W) p(w) dp(w)

— [ e du@) = | o) Pdu(w).
Ql Q1
Therefore,
2
A [ ety Pae)| < | [ ewrrwine)| < 8] [ towrPa)|.
(921 (951 971
i.e. I'is a continuous Riesz basis for U with bounds A, B. ]

Theorem 3.8. Let F: Q) — U be a continuous frame for Hilbert C*-module U over a unital
C*-algebra A. If F is a continuous Riesz basis for U, then it is a continuous exact frame.

Proof. Let €1 C 2 be a measurable subset of  with 0 < (£21) < co. For ¢ = xq, € L*(Q, A)
we have,

II/Ql F(w)dp(w)|?* = II/Ql Xou (@) F (w)dp(w)]|*

> A /Q xen (@) Pda(w)]
— Allu(1)] > 0.

Hence le F(w)du(w) # 0.
Now suppose that F': Q\ ©; — U is a continuous frame for U. Then by completeness of
F |q\q, there exists ¢o € L*(Q\ Q1, A) such that

F(w)du(w) = / 0(w) F(w)dp(w).

951 O\

Define ¢ : Q — A where

_Jeow) weQ\
SO(W)_{l w € Q.

Then ¢ € L*(Q2, A) and

/ o (@) F(w)du(w) = / (W) F(w)dp(w),
Q

Q

s0 [o(¢ — x0,)(w)F(w)dp(w) = 0. Hence L*-independent shows that ¢ = xq, and so ¢ = 0.
Therefore
| F@due) = [ o) F)dut) = o
951 O\
which is a contradiction. ]
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Proposition 3.9. Let F : Q — U be a continuous Bessel mapping for Hilbert C*-module U
over a unital C*-algebra A with pre-frame operator T. Suppose that F is p-complete and the

mapping
Vi L*(Q,A) — L*(Q,A)

o / F())dp(w)

defines a bounded, adjointable and invertible operator. Then F is a continuous Riesz basis
for U.

Proof. Since F' is Bessel, so the pre-frame operator 1" is well-defined and bounded and ad-
jointable with T* f = {(f, F(w)) }weq for f € U.
Also T*T =V, because

(T*T)(g) = T°( /Q (@) P (w)dpu(w))
o / (@) F(@)du(w), F(7)) }en
— { / F())du(w)}yeo.

Since T is bounded, so there exist B > 0 such that ||T¢||? < B||¢|? i-e.

||/ w)du( )|2<BH/!90 “Rdpu(w))).

Since T*T is positive, so

\ [ o) F@dute

2
2
= 1Tl

= I{T*Tp, )]
= ()t )i

= [k
* = —2 2
> @ m)F | el
-2
Therefore F' is continuous Riesz basis with lower and upper bounds H(T *T)T1 and B,
respectively. O

Theorem 3.10. Let F' : Q — U be a continuous frame for Hilbert C*-module U over a unital
C*-algebra A with pre-frame operator operator T'. Then F' is a continuous Riesz basis for U
if and only if F is a Riesz-type frame.

Proof. (=) Let F1 # F» be two duals of F. Then for each f € U,
[ 4 Faw) = Falw) F)due) = [ (1P @) F@)dne) ~ [ (7, Falw)) F)di(e)
Q Q Q
— =0
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Since F is continuous Riesz basis, so is L2-independent and

(f, Filw) - Fo(w)) =0 = (f,Fi(w)) = (f, F2(w)) (we)

Therefore F} = F5.
(<=) Let F be Riesz-type frame and ¢ € L*(, A) such that [, p(w)F(w)du(w) = 0.
Since F is Riesz-type, so R(T*) = L*(Q, A). Also L?(Q, A) = Ker(T) ® R(T*). Then

p € Ker(T) = R(T*)* = {0},
then ¢ = 0 and so F is L2-independent. Therefore F is a continuous Riesz basis. U

Corollary 3.11. Let F' : Q — U be a continuous frame for Hilbert C*-module U over a unital
C*-algebra A. If F' is a Riesz-type frame, then it is a continuons exact frame.

Duo to the Theorem 3.10, the converse of the Proposition 3.9 holds as follows.

Corollary 3.12. Let F': Q — U be a continuous Riesz basis for Hilbert C*-module U over a
unital C*-algebra A with bounds A, B > 0 and pre-frame operator T. Then F is pu-complete
and the mapping

Vi L*(Q,A) — L*(Q,A)
o [ P F) POl
defines a bounded, adjointable and invertible operator.
Proof. Let F be a continuous Riesz basis for U with bounds A, B > 0. Then the pre-frame
operator T satisfies ||T|| < v/B. Also,
(D)) = T*( | plw)F@)dn(w)
{/ () F(@)du(w), F(1))}co

— ¢ / F(7)dp()}ren-

Then V = T*T'. Moreover, F' is Riesz-type and T™ is surjective. Then by lemma 2.6, V is
adjointable and invertible operator and
|(T*T) 1}| < || < B.
O

According to the Theorem 3.10, in the next corollary we show the relation between two
continuous Riesz bases for a Hilbert C*-module U.

Corollary 3.13. Let F,G : Q — U be two continuous Riesz bases for Hilbert C*-module
U over a unital C*-algebra A and Tr,Tq,Sqa be the pre-frame operator of F, the pre-frame

operator of G and the frame operator of G, respectively. Then there exists an invertible
operator K € End’(U) such that G = SqgK*F'

Proof. Let f € U such that (TgTy)f = 0. Then To((Thf)(w)) = 0 for all w € Q and
Jo(fs F(w)G(w)dp(w) = 0.
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Since G is L%-independence, so (f, F(w)) = 0 for all w € Q and the completeness of
F implies that f = 0 and hence TgT} is injective. Moreover, Th and T are surjective,
therefore T T} is invertible.

Put K := (I¢Ty) ! Then for any f,g € U,

(f.9)=(K"'Kf.g)
= (TrK f,T59)

_ /Q (K f, F(w)){G(w), g)dp(w)
_ /Q (f, K*F(@))(G(w), g)dp(w).

Thus K*F is a dual of G. But G is a Riesz-type frame, then S(_;IG = K*F and hence
G = SqgK*F. O

Conclusion

In this paper, we have introduced a p-complete Bessel mapping and a continuous Riesz
basis in Hilbert C*-modules, by recalling some definitions and properties of continuous frames
in Hilbert C*-modules. We have investigated the relation between a continuous Riesz basis
and an L% independent Bessel mapping. Also, we have shown that a continuous Riesz basis
is a continuous exact frame and a continuous frame is a continuous Riesz basis if and only
if it is a Riesz-type frame. Finally, we have given the relation between two continuous Riesz
bases in Hilbert C*-modules.
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