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Abstract. The class of Bryant-type metrics is a natural extension of the class of 4-th root
Finsler metrics which are used in Biology as ecological metrics. In this paper, we classify
Bryant-type metrics admitting an (α, β)-metric on a two-dimensional manifold and show
that it contains two classes of non-Riemannian (α, β)-metrics, specially Randers-type met-
rics. This might provide fine insights into a possible theory of deformations of Finsler norms.
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1. Introduction

There are two important classes of Finsler metrics, namely, the class of m-th root metrics
and the class of (α, β)-metrics. Let (M,F ) be a Finsler manifold of dimension n, TM its
tangent bundle and (xi, yi) the coordinates in a local chart on TM . Let F = m

√
A, where A

is given by A := ai1...im(x)y
i1yi2 . . . yim with ai1...im symmetric in all its indices [21]. Then

F is called an m-th root metric. The theory of m-th root metrics has been developed by
Shimada [21], and applied to Biology as an ecological metric [3]. Recently studies show that
the theory of m-th root Finsler metrics plays a very important role in Gravitation, Cancer
and Seismic Ray Theory [2][4][7][8][14][15][24][25][28]. An (α, β)-metric is a Finsler metric of
the form F := αϕ(s), s = β/α, where ϕ = ϕ(s) is a C∞ on (−b0, b0), α =

√
aij(x)yiyj is

a Riemannian metric and β = bi(x)y
i is a 1-form on M ([23][26][27]). These metrics have

important applications in Physics, Mechanics and Seismology, etc, see for instance [3]. The
Randers metric F = α+ β is a significant (α, β)-metric which was introduced by Randers in
the context of general relativity [12][19].

Let

F =

√√
A+B + C,(1.1)

where A = aijkl(x)y
iyjykyl with aijkl symmetric in all its indices, B = bij(x)y

iyj and C =
ci(x)y

i. The Finsler metrics (1.1) are called Bryant-type metrics. In (1.1), if C = 0 then F is
called a generalized 4-th root metric [22]. Thus, the Bryant-type metrics can be considered
as the Randers change of generalized 4-th root metrics. In [15], Li-Shen studied the locally
projectively flat generalized 4-th root metrics. In [30], Xu-Li has constructed a family of
projectively flat Bryant-type metrics with flag curvature K = 1. For other progress on the
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class of generalized m-th root metrics, see [28] and [29]. If B = C = 0, then F reduces to a
4-th root metric.

As an special example of Bryant-type metric, let us put

A :=

√
A+ B
2D

, B :=
( C
D

)2
, C :=

C
D

where

A := (|y|2 cos(2α) + |x|2|y|2 − ⟨x, y⟩2)2 + (|y|2 sin(2α))2,
B := |y|2 cos(2α) + |x|2|y|2 − ⟨x, y⟩2, C := ⟨x, y⟩ sin(2α), D := |x|4 + 2|x|2 cos(2α) + 1,

and 0 < α < π/2. Then we get the Bryant metric in [10][11] which the first time obtained by
Bryant in the following form

F (x, y) = Im

[
−⟨x, y⟩+ i

√
(e2iα + |x|2)|y|2 − ⟨x, y⟩2
e2iα + |x|2

]
,(1.2)

where Im[·] denotes the imaginary part of a complex number. This metric has been introduced
by Bryant when he classified the global structures of projectively flat Finsler metrics of flag
curvature K = 1 on S2 [9][10][11]. In [20], by using the algebraic equations, Shen gave
the expression (1.1) of Bryant metric including higher dimensions. By this expression, Shen
obtained several interesting projectively flat Finsler metrics of constant flag curvature which
can be used as models in certain problems.

In [18], Matsumoto-Numata considered the arbitrary cubic metric F = 3
√
aijkyiyjyk on an

n-dimensional manifold M , which admits an (α, β)-metric. They proved that for the case of
n > 2, if F is an (α, β)-metric where α is non-degenerate, then F 3 can be written in the form
F = 3

√
c1α2β + c2β3 with constants c1 and c2. For n = 2, they showed that it can be written

in the form F = 3
√
α2β by choosing suitable quadratic form α =

√
aij(x)yiyj and one-form

β = bi(x)y
i, where α2 may be degenerate. In [1], Abazari-Khoshdani proved that a 4-th

root metric admitting an (α, β)-metric on n-dimensional manifold M can be written as the
(α, β)-metric F = 4

√
c1α4 + c2α2β2 + c3β4, where c1, c2 and c3 are real constants. For other

progress on m-th root metrics, see [13], [15], [16] and [17]. It is interesting to characterize the
Bryant-type metric (1.1) admitting an (α, β)-metric on a Finsler surface M . Then, we prove
the following.

Theorem 1.1. Let F =
√√

A+B+C be the Bryant-type metric on a 2-dimensional manifold
M . Then, F can be expressed in the form F = αϕ(s), s = β/α, which ϕ(s) is given by one
of the following forms

ϕ(s) := c1 + c2s+ c3
√
1 + c4s, (Randers-type metrics)(1.3)

ϕ(s) := d1

√
−1±

√
d2 + d3s2 ∓ d4

√
d5 ± d6

√
d2 + d3s2 +

d7s

−1±
√
d2 + d3s2

+ s,(1.4)

where ci and di are non-zero real constants.

Theorem 1.1 provide fine insights into a possible theory of deformations of Finsler norms.
These deformations obtain a mutual bridge between the class of (α, β)-metrics and the class
of m-th root metrics [5][6].
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2. Proof of Theorem 1.1

To prove the Theorem 1.1, we need to remark some facts about the class of m-th root
(α, β)-metrics. In [18], Matsumoto-Numata studied the cubic (α, β)-metrics and proved the
following.

Lemma 2.1. ([18]) Let F = 3
√
aijkyiyjyk be the cubic Finsler metric on a Finsler surface

M . Then it can be written in the form F = 3
√
α2β by choosing suitable quadratic form

α =
√
aij(x)yiyj and one-form β = bi(x)y

i, where α2 may be degenerate.

In [1], Abazari-Khoshdani consider the class of 4-th root (α, β)-metrics and prove the
following.

Lemma 2.2. ([1]) Let F = 4
√
aijklyiyjykyl be a quartic Finsler metric on an n-dimensional

Finsler manifold M . Then it can be written in the form F = 4
√
c1α4 + c2α2β2 + c3β4 with

real constants c1, c2, c3 by choosing suitable quadratic form α2 and one-form β of yi, where
α2 may be degenerate.

Now, we are ready to prove the Theorem 1.1.

Proof of Theorem 1.1: Let F =
√√

A+B+C be a Bryant-type metric on a 2-dimensional
Finsler manifold M , where A = aijkl(x)y

iyjykyl, B = bij(x)y
iyj , C = ci(x)y

i. So, we have

F 4 − 4F 3ciy
i + 2F 2

{
3cicj − bij

}
yiyj + F

{
4bijck − 4cicjck

}
yiyjyk

+
{
cicjckcl + bijbkl − 2bijckcl − aijkl

}
yiyjykyl = 0.(2.1)

By permutation in (2.1), we get

16F 4 −32(c1y
1 + c2y

2)F 3 +
{
8(y1)2(3c21 − b11) + 16y1y2(3c1c2 − b12)

+8(y2)2(3c22 − b22)
}
F 2 + 8

{
y1 (y2)2(c1b22 + 2c2b12 − 3c1c

2
2)

+(y1)3(c1b11 − c31) + (y2)3(c2b22 − c32) + y2(y1)2(c2b11 + 2c1b21 − 3c2c
2
1)
}
F

+(y1)4(d0 − a1111) + (y1)3 y2(d1 − 4a1112) + (y2)2(y1)2(d2 − 6a1122)

+y1(y2)3(d3 − 4a1222) + (y2)4(d4 − a2222) = 0,(2.2)
where

d0 := (c21 − b11)
2,

d4 := (c22 − b22)
2,

d1 := 4(c2c
3
1 + b11b12 − b12c

2
1 − b11c1c2),

d3 := 4(c1c
3
2 + b22b12 − b12c

2
2 − b22c1c2),

d2 := 6c21c
2
2 − 2(b11c

2
2 + 4b12c1c2 + b22c

2
1) + 2(b11b22 + 2b212).

Let us put

f :=
F

y1
and t :=

y2

y1
.
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Then (2.2) can be written as follows

f4 + Af3 +Bf2 + Cf +D = 0,(2.3)

where

A :=−2(c1 + c2t),

B :=
1

2

{
(3c21 − b11) + 2t(3c1c2 − b12) + t2(3c22 − b22)

}
,

C :=
1

2

{
c1(b11 − c21) + t(c2b11 + 2c1b21 − 3c21c2) + t2(c1b22 + 2c2b12 − 3c1c

2
2) + t3(c2b22 − c32)

}
,

D :=
1

16

{
(d0 − a1111) + t(d1 − 4a1112) + t2(d2 − 6a1122) + t3(d3 − 4a1222) + t4(d4 − a2222)

}
.

Let us define
g := f +

1

4
A.

Then (2.3) is written as follows

g4 + g2Φ+ gΨ+ Γ = 0,(2.4)

where

Φ := B− 3

8
A2,

Ψ := C− 1

2
AB+

1

8
A3,

Γ := D− 1

4
AC+

1

16
A2B− 3

256
A4.

The equation (2.4) is a 4-degree equation without including the third degree sentence. So, we
can decompose it as follows

g4 + g2Φ+ gΨ+ Γ = (āg2 + b̄g + c̄)(ãg2 + b̃g + c̃),(2.5)

where ā, b̄, c̄, ã, b̃ and c̃ are unknown real numbers. We are going to find these coefficients.
By (2.5), we get

āã = 1,(2.6)
āb̃+ b̄ã = 0,(2.7)
āc̃+ b̄b̃+ c̄ã = Φ,(2.8)
b̄c̃+ c̄b̃ = Ψ,(2.9)
c̄c̃ = Γ.(2.10)

According (2.6)-(2.10), we obtain

ā = ã = 1,(2.11)
b̃ = −b̄,(2.12)
c̃+ c̄ = Φ+ b̄2,(2.13)

c̃− c̄ =
Ψ

b̄
.(2.14)
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By (2.13) and (2.14), one can get

c̃ =
1

2

(
Φ+ b̄2 +

Ψ

b̄

)
, c̄ =

1

2

(
Φ+ b̄2 − Ψ

b̄

)
.(2.15)

All of coefficients are computed along b̄. If we find b̄, then the equation (2.5) can be solved.
In order to find b̄, we use the relations (2.6)-(2.15). First, (2.10) and (2.15) imply that

z3 + ϕz2 + ψz + η = 0,(2.16)

where

z := 4b̄2,(2.17)
ϕ := 8B− 3A2,(2.18)
ψ := 16B2 + 3A4 − 16A2B− 64D+ 16AC,(2.19)
η := 8A4B− 16A3C+ 64ABC− A6 − 16A2B2 − 64C2.(2.20)

It is remarkable that, in (2.16), ϕ, ψ, η are polynomials of degree 2, 4 and 6, respectively. So,
we can decompose (2.16) as follows

(z + a)(z2 + bz + c) = 0,(2.21)

where a, b, c are polynomials in terms of degree 2, 2 and 4, respectively. Now, we discuss
about the solutions of (2.21). For the equation (2.21), we have two major cases:

Case 1 : z + a = 0. In this case, we get

b̄ = ±1

2

√
d1 + d2t+ d3t2,(2.22)

where d1, d2, d3 are real numbers. Putting t = y2

y1
in (2.22), we obtain

b̄ = ± 1

2y1
α,(2.23)

where
α :=

√
d1(y1)2 + d2y1y2 + d3(y2)2

is a Riemannian metric. By definition, Ψ is a cubic form. Then, by using the Lemma 2.1 and
putting (2.23) in (2.15), we get

c̃ =
1

(y1)2

{
c̄1α

2 + c̄2αβ
}
, c̄ =

1

(y1)2

{
c̄1α

2 + c̄3αβ
}
,(2.24)

where β = bi(x)y
i is a 1-form on M and c̄i are real constants.

By (2.5), one of the following holds

āg2 + b̄g + c̄ = 0,(2.25)
ãg2 + b̃g + c̃ = 0.(2.26)

In the case of (2.25), the solutions of (2.5) are given by

g1,2 =
1

y1

{
e1α± e2

√
λ1α2 + λ2αβ

}
,
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where ei and λi are real numbers. Similarly, in the case of (2.26), the solutions of (2.5) are
given by

g3,4 =
1

y1

{
e3α± e4

√
λ1α2 + λ3αβ

}
,

where λ3 is a real number. On the other hand, according to definition, we have f := g − A
4 .

Thus, for the case of (2.27), we get

f1 =
1

y1

{
e1α+ e2

√
λ1α2 + λ2αβ − β

}
,

f2 =
1

y1

{
e1α− e2

√
λ1α2 + λ2αβ − β

}
.

Similarly for (2.27), we obtain

f3 =
1

y1

{
e3α+ e4

√
λ1α2 + λ3αβ − β

}
,

f4 =
1

y1

{
e3α− e4

√
λ1α2 + λ3αβ − β

}
.

By (2.3), we have F = y1f . Then

F = (e1α− β)± e2
√
λ1α2 + λ2αβ,(2.27)

F = (e3α− β)± e4
√
λ1α2 + λ3αβ.(2.28)

It is easy to see that, (2.27) and (2.28) can be written as (1.3) which are called Randers-type
Finsler metrics.

Case 2 : z2 + bz + c = 0. By considering t := y2

y1
, the solution of z2 + bz + c = 0 are given

by following

z1,2 =
1

2(y1)2

{
−
(
k1(y

2)2 +m1y
1y2 + n1(y

1)2
)
±
√
ω
}
,

where

ω := κ1(y
1)4 + κ2(y

1)3y2 + κ3(y
1)2(y2)2 + κ4y

1(y2)3 + κ5(y
2)4

and k1, m1, n1 and κi are real constants. Let us define

α :=
√
k1(y2)2 +m1y1y2 + n1(y1)2

which is a Riemannain metric. Since ω is a quartic form, then by using Lemma 2.2, we can
get two following solutions

z1,2 =
1

2(y1)2

{
− α2 ± α

√
h1α2 + h2β2

}
.

By (2.17), we have z = 4 b̄2. Then we obtain

b̄2 =
1

8(y1)2

{
− α2 ± α

√
h1α2 + h2β2

}
.(2.29)
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Putting (2.29) in (2.15) implies that

c̄ =
1

(y1)2

{
µ1α

2 ± µ2α
√
h1α2 + h2β2 +

µ3α
2β√

−α2 ±
√
h1α2 + h2β2

}
,(2.30)

c̃ =
1

(y1)2

{
µ1α

2 ± µ2α
√
h1α2 + h2β2 +

µ4α
2β√

−α2 ±
√
h1α2 + h2β2

}
,(2.31)

where µi are real constants. According to (2.5), (2.30) and (2.31), the solutions of (2.25) and
(2.26) are as follows

g1,2 =
1

y1

{
p1
√
−α2 ± α̂± p2

√
ē1α2 ± ē2α̂+ ē3

α2β

−α2 ± α̂

}
,

g3,4 =
1

y1

{
p1
√
−α2 ± α̂± p2

√
ē1α2 ± ē2α̂+ ē4

α2β

−α2 ± α̂

}
,

where pi and ēi are real constants and

α̂ := α
√
h1α2 + h2β2.

Since f = g − A
4 , then we get

f1,2 =
1

y1

{
β + p1

√
−α2 ± α̂∓ p2

√
ē1α2 ± ē2α̂+ ē3

α2β

−α2 ± α̂

}
,(2.32)

f3,4 =
1

y1

{
β + p1

√
−α2 ± α̂∓ p2

√
ē1α2 ± ē2α̂+ ē4

α2β

−α2 ± α̂

}
.(2.33)

By considering F = y1f , (2.32) and (2.33), we get (1.4). This completes the proof. □
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