

**Research Paper** 

# ON PRESSURE OF ASYMPTOTICALLY SUB-ADDITIVE POTENTIALS WITH MISTAKES VIA WEIGHTED METRICS

MEHDI RAHIMI\* AND NAHID BIDABADI

ABSTRACT. In this paper, we use some bi-sequences of positive numbers to define weighted dynamical metrics. Then we show that, replacing the Bowen dynamical metric by the weighted metric, the definition of pressure for asymptotically sub-additive potentials, including measure-theoretic and topological, is not affected. This generalizes some known results for pressure, defined using mean metrics and continuous potentials.

MSC(2010): 28D20; 28E10. Keywords: Asymptotically sub-additive potential, Measure-theoretic pressure, Topological pressure, Weighted metric.

#### 1. INTRODUCTION

The concepts of measure-theoretic and topological pressure of a topological dynamical system are introduced by Ruelle [15] and Walters [17] and are applied in formulation of the thermodynamic formalism in ergodic theory, dynamical systems and dimension theory [2, 10].

These concepts are extended for sub-additive potentials [1, 3, 5] and asymptotically subadditive potentials with mistake functions [18].

The definition of measure-theoretic and topological pressure for continuous, sub-additive and asymptotically sub-additive potentials are mainly given, using the Bowen metric

$$d_n(x,y) := \max\{d(T^i(x), T^i(y)) : 0 \le i \le n-1\} \qquad (x, y \in X, \ n \in \mathbb{N}).$$

and its corresponding dynamical ball

$$B_n(x,\epsilon) = \{ y \in X : d_n(x,y) < \epsilon \}.$$

More precisely, the concepts of  $(n, \epsilon)$ -separated and spanning sets, applied in the definition of measure-theoretic and topological pressure, are based on the Bowen metric.

In [9], the definition of measure-theoretic and topological pressure for continuous potentials are formulated using the mean metric

$$\widehat{d}_n(x,y) := \frac{1}{n} \sum_{i=0}^{n-1} d(T^i(x), T^i(y)) \qquad (x, y \in X, \ n \in \mathbb{N}).$$

The idea of replacing the Bowen metric by the mean metric is also applied for the entropy of dynamical systems [8]. In [13, 14], the concept of mean metric is generalized to a more general

Date: Received: January 15, 2023, Accepted: April 10, 2023.

<sup>\*</sup>Corresponding author.

### M. RAHIMI AND N. BIDABADI

family of weighted metrics  $d_{n,\Gamma}$ , induced by a probability bi-sequence  $\Gamma = \{\gamma_{m,n}\}_{m,n\geq 0} \subset \mathbb{R}$ , in the sense that  $\sum_{i=0}^{n} \gamma_{i,n} = 1$  for any  $n \in \mathbb{N}$ , and are applied for the pressure and conditional entropy of a dynamical system.

In this paper, we attempt to formulate the measure-theoretic and topological pressure for asymptotically sub-additive potentials, using the weighted metric  $d_{n,\Gamma}$  induced by a probability bi-sequence. We show that, the quantities defined via the metric  $d_{n,\Gamma}$  coincide to the ones defined via the Bowen metric  $d_n$ .

In Section 2, we present some preliminary concepts and results which are used in this paper. In Section 3, we formulate the measure-theoretic pressure for asymptotically sub-additive potentials, using the weighted metrics. In Section 4, we formulate the topological pressure for asymptotically sub-additive potentials, using the weighted metrics. Section 5 is a discussion and concluding remarks.

In the rest of the paper, a topological dynamical system (abbreviated by TDS) is a continuous map  $T: X \to X$  on a compact metric space X. The space X is naturally equipped by the Borel  $\sigma$ -algebra. The set of T-invariant and T-ergodic probability measures are denoted by M(X,T) and E(X,T) respectively.

## 2. Preliminary concepts and facts

In this section, we review some preliminary facts which are required for the rest of the paper. Let  $d_n$  be the Bowen metric and  $B_n(x,\epsilon)$  the corresponding ball centered at x and with radius  $\epsilon$ . Given  $Z \subseteq X$ ,  $n \in \mathbb{N}$  and  $\epsilon > 0$ , A subset  $F \subseteq Z$  is an  $(n, \epsilon)$ -spanning set for Z if for any  $x \in Z$ , there exists  $y \in F$  such that  $d_n(x, y) \leq \epsilon$ . A set  $E \subseteq Z$  is an  $(n, \epsilon)$ -separated set for Z if for any  $x, y \in E$  with  $x \neq y$  implies  $d_n(x, y) > \epsilon$ . Given  $\delta > 0$  and  $\mu \in M(X, T)$ , a set S is an  $(n, \epsilon, \delta)$ -spanning set if  $\mu(\bigcup_{x \in S} B_n(x, \epsilon)) > 1 - \delta$ .

A sequence of continuous real valued functions  $\mathcal{F} = \{f_n\}_{n\geq 1}$  is an asymptotically subadditive potential (abbreviated by ASP) on X, if for each  $k \geq 1$  there exists a sub-additive potential  $\Phi_k = \{\phi_n^k\}_{n\geq 1}$ , in the sense that,  $\phi_{n+m}^k(x) \leq \phi_n^k(x) + \phi_m^k(T^n(x)), \forall x \in X, \forall m, n \in \mathbb{N}$ , such that

$$\limsup_{n \to +\infty} \frac{1}{n} ||f_n - \phi_n^k|| < \frac{1}{k},$$

where  $||f_n - \phi_n^k|| := \sup_{x \in X} |f_n(x) - \phi_n^k(x)|$ . In [6], the asymptotically sub-additive topological pressure of T with respect to  $\mathcal{F}$  is defined as follows:

$$P(T, \mathcal{F}) := \lim_{\epsilon \to 0} \limsup_{n \to +\infty} \frac{1}{n} \log P(T, \mathcal{F}, n, \epsilon)$$

where,

(2.1) 
$$P(T, \mathcal{F}, n, \epsilon) := \sup \{ \sum_{y \in E} e^{f_n(y)} : E \text{ is an } (n, \epsilon) - \text{separated subset for } X \}.$$

If  $\mathcal{F} = \{f_n\}_{n \ge 1}$  is an ASP, given  $\mu \in M(X, T)$ , set

$$\mathcal{F}_*(\mu) := \lim_{n \to +\infty} \int_X f_n d\mu.$$

When  $\mu \in E(X,T)$ , the limit above exists  $\mu$ -almost everywhere without integrating with respect to  $\mu$  [6]. Indeed one may easily see that  $\mathcal{F}_*(\mu) = \lim_{k \to +\infty} \lim_{n \to +\infty} \frac{1}{n} \int_X \phi_n^k d\mu$ . We have the following variational principle [6].

**Theorem 2.1.** Let  $T: X \to X$  be a TDS, and  $\mathcal{F} = \{f_n\}_{n \geq 1}$  an ASP. Then,

$$P(T,\mathcal{F}) = \begin{cases} -\infty & \text{if } \mathcal{F}_*(\mu) = -\infty \text{ for all } \mu \in M(X,T) \\ \sup\{h_\mu(T) + \mathcal{F}_*(\mu) : \mu \in M(X,T), \ \mathcal{F}_*(\mu) \neq -\infty\} & \text{otherwise} \end{cases}$$

**Remark 2.2.** Note that, In light of the ergodic decomposition for *T*-invariant measures and the Jacob's theorem, the supremum on the right hand side of the previous equality may be taken over all  $\mu \in E(X, T)$ .

Before we proceed, we review the concept of mistake function which will be used in the definition of  $\Gamma$ -mistake balls as a generalization of the mistake balls [11, 12, 16].

**Definition 2.3.** Given  $\epsilon_0 > 0$ , a function  $g : \mathbb{N} \times (0, \epsilon_0] \to \mathbb{N}$  is called a mistake function if for every  $\epsilon \in (0, \epsilon_0]$  and  $n \in \mathbb{N}$ ,  $g(n, \epsilon) \leq g(n+1, \epsilon)$  and  $\lim_{n \to +\infty} \frac{g(n, \epsilon)}{n} = 0$ . Note that, one may extend the definition of a mistake function on all positive real line by setting  $g(n, \epsilon) = g(n, \epsilon_0)$  for  $\epsilon > \epsilon_0$ .

The measure-theoretic and topological pressures for asymptotic sub-additive potentials under a mistake function are defined in [4]. These quantities are also connected together via a variational principle. (See Corollary 1 in [4]). It is proved that, the pressures under a mistake function coincides to the corresponding quantities in the absence of any mistake function. (See Theorems 2.3 and 2.4 in [4]).

In Sections 3 and 4, we extend the results in [4], for the pressures defined using a family of weighted metrics including the mean metric.

### 3. Weighted metrics and measure-theoretic pressure

In this section, we define weighted metrics corresponding to a probability bi-sequence. We first review the concept of probability bi-sequence.

**Definition 3.1.** A sequence  $\Gamma = {\gamma_{m,n}}_{m,n\geq 0}$  is said to be a probability bi-sequence if  $\sum_{i=0}^{n} \gamma_{i,n} = 1$  for all  $n \geq 1$ .

**Example 3.2.**  $\Gamma_0 = \{\gamma_{m,n}\}_{m,n\geq 0}$  with  $\gamma_{m,n} = \frac{1}{n+1}$  is a probability bi-sequence. Also, given every sequence of positive numbers  $\{a_n\}_{n\geq 0}$ , if  $S_n := \sum_{j=0}^n a_j$ , then  $\Gamma_1 = \{\gamma_{m,n}\}_{m,n\geq 0}$  with  $\gamma_{m,n} := \frac{a_m}{S_n}$  is a probability bi-sequence.

**Definition 3.3.** Let  $T: X \to X$  be a compact dynamical system and  $\Gamma = \{\gamma_{m,n}\}_{m,n \ge 0}$  be a probability bi-sequence. Given  $n \in \mathbb{N}$  and  $x, y \in X$ , set:

$$d_{n,\Gamma}(x,y) := \sum_{i=0}^{n-1} \gamma_{i,n-1} d(T^i(x), T^i(y)).$$

Obviously,  $d_{n,\Gamma}$  is a metric on X. For  $\epsilon > 0$ ,  $x \in X$  and  $n \in \mathbb{N}$ , the  $(\Gamma, n)$ -ball centered at x with radius  $\epsilon$  and length n is defined by

$$B_{n,\Gamma}(x,\epsilon) := \{ y \in X : d_{n,\Gamma}(y,x) < \epsilon \}.$$

Note that, if  $\Gamma_0 = \{\gamma_{m,n}\}_{m,n\geq 0}$  with  $\gamma_{m,n} = \frac{1}{n+1}$  then  $d_{n,\Gamma_0} = \hat{d}_n$  is the mean metric.

Given  $n \ge 1$  and  $\epsilon > 0$ , a subset  $F \subseteq X$  is said to be a  $(\Gamma, n, \epsilon)$ -spanning set if for any  $x \in X$  there exists  $y \in F$  such that  $d_{n,\Gamma}(x, y) \le \epsilon$ . Also, a subset  $E \subseteq X$  is said to be a  $(\Gamma, n, \epsilon)$ -separated set if  $x, y \in E$  and  $x \ne y$  implies  $d_{n,\Gamma}(x, y) > \epsilon$ .

Let  $\mu \in E(X,T)$ . For  $0 < \delta < 1$ ,  $n \ge 1$  and  $\epsilon > 0$ , a set  $F \subseteq X$  is called a  $(\Gamma, \mu, n, \epsilon, \delta)$ spanning set if  $\mu(\bigcup_{x \in F} B_{n,\Gamma}(x, \epsilon)) \ge 1 - \delta$ .

Let  $\Lambda_n := \{0, 1, 2, \dots, n-1\}$ . Given any subset  $\Lambda \subseteq \Lambda_n$ , set  $d_{\Lambda}(x, y) := \max\{d(T^i(x), T^i(y)) : i \in \Lambda\}$  and  $B_{\Lambda}(x, \epsilon) := \{y \in X : d_{\Lambda}(x, y) < \epsilon\}$ . Now we are ready to define the  $\Gamma$ -mistake balls.

**Definition 3.4.** Let  $T: X \to X$  be a TDS. For  $n \ge 1$ ,  $\epsilon > 0$  and any probability bi-sequence  $\Gamma = {\gamma_{m,n}}_{m,n\ge 0}$ , the  $\Gamma$ -mistake ball with center  $x \in X$  and radius  $\epsilon$  and of length n is defined as follows:

$$B_{n,\Gamma}(g;x,\epsilon) := \{ y \in X : \sum_{i=0}^{n-1} \gamma_{i,n-1} \chi_{B(T^i(x),\epsilon)}(T^i(y)) > 1 - \frac{g(n,\epsilon)}{n} \}$$
$$= \bigcup_{\Lambda \in I_{\Gamma}(g;n,\epsilon)} B_{\Lambda}(x,\epsilon),$$

where

$$I_{\Gamma}(g; n, \epsilon) := \{\Lambda \subseteq \Lambda_n : \sum_{i \in \Lambda} \gamma_{i, n-1} > 1 - \frac{g(n, \epsilon)}{n}\}.$$

The following lemma is an analogous version of Lemma 3.1 in [4].

**Lemma 3.5.** Let X be a TDS, g a mistake function,  $\mathcal{F} = \{f_n\}_{n\geq 1}$  an ASP and  $\Gamma = \{\gamma_{m,n}\}_{m,n\geq 0}$  be a probability bi-sequence. Given  $k \geq 1$ , there exists sub-additive potential  $\Phi_k = \{\phi_n^k\}_{n\geq 1}$  such that for any  $l \geq 1$  and small  $\eta > 0$ , there exists  $\epsilon_0 > 0$  such that for any  $0 < \epsilon < \epsilon_0$ , the following inequalities hold for large n:

$$\sup_{y \in B_{n,\Gamma}(g;x,\epsilon)} f_n(y) \le \sum_{i=0}^{n-1} \left( \frac{1}{l} \phi_l^k(T^i(x)) + \eta \right) + C \left( 1 + \frac{(\gamma_{n-1}^*)^{-1}}{n} g(n,\epsilon) \right) + \frac{n}{k}$$

where  $\gamma_{n-1}^* := \min_{0 \le i \le n-1} \gamma_{i,n-1}$  and  $C := \max\{2||\frac{1}{l}\phi_l^k|| + \eta, 4\max_{1 \le i \le 2l} |\phi_j^k(x)|\}.$ 

*Proof.* Given  $k \ge 1$ , since  $\mathcal{F} = \{f_n\}_{n\ge 1}$  is an ASP, there exists sub-additive potentials  $\Phi_k = \{\phi_n^k\}_{n\ge}$  such that  $\limsup_{n\to+\infty} \frac{1}{n} ||f_n - \phi_n^k|| < \frac{1}{k}$ . This implies that,

$$f_n(x) \le \phi_n^k(x) + \frac{n}{k} \qquad \forall x \in X,$$

for large  $n \in \mathbb{N}$ . Now, fix any positive integer  $l \geq 1$ . Since  $\frac{1}{l}\phi_l^k$  is continuous, for every  $\eta > 0$ , there exists  $\epsilon_0 > 0$  such that for any  $\epsilon \in (0, \epsilon_0)$ , we have

(3.1) 
$$d(x,y) < \epsilon \Longrightarrow \left| \frac{1}{l} \phi_l^k(x) - \frac{1}{l} \phi_l^k(y) \right| < \eta.$$

36

For every  $y \in B_{n,\Gamma}(g, x, \epsilon)$ , there exists  $\Lambda \in I_{\Gamma}(g, n, \epsilon)$  such that  $y \in B_{\Lambda}(x, \epsilon)$ . Note that, if  $\Lambda \in I_{\Gamma}(g, n, \epsilon)$  then  $|\Lambda^c| \leq \frac{(\gamma_{n-1}^*)^{-1}}{n}g(n, \epsilon)$ . Therefore,

$$\begin{aligned} \sum_{i=0}^{n-1} \frac{1}{l} \phi_l^k(T^i(y)) &= \sum_{i \in \Lambda} \frac{1}{l} \phi_l^k(T^i(y)) + \sum_{i \notin \Lambda} \frac{1}{l} \phi_l^k(T^i(y)) \\ &\leq \sum_{i \in \Lambda} \left( \frac{1}{l} \phi_l^k(T^i(x) + \eta \right) + \sum_{i \in \Lambda^c} ||\frac{1}{l} \phi_l^k|| \\ &\leq \sum_{i=0}^{n-1} \left( \frac{1}{l} \phi_l^k(T^i(x)) + \eta \right) + |\Lambda^c| \left( 2||\frac{1}{l} \phi_l^k|| + \eta \right) \\ &\leq \sum_{i=0}^{n-1} \left( \frac{1}{l} \phi_l^k(T^i(x)) + \eta \right) + \frac{(\gamma_{n-1}^*)^{-1}}{n} \left( 2||\frac{1}{l} \phi_l^k|| + \eta \right) g(n, \epsilon). \end{aligned}$$

$$(3.2)$$

For  $n \ge 1$ , large enough, one may write n = sl + r where  $0 \le r < l$  and  $s \ge 0$ . Then, for  $0 \le j < l$ , setting  $\phi_0^k = 0$ , we have

$$\phi_n^k(x) \le \phi_j^k(x) + \sum_{i=0}^{s-2} T^{il}(T^j(x)) + \phi_{l+r-j}^k(T^{(s-1)l}(T^j(x))).$$

Summing over  $j = 0, 1, 2, \cdots, l - 1$ , one has

$$l\phi_n^k(x) \le 2lC_0 + \sum_{i=0}^{(s-1)l-1} \phi_l^k(T^i(x)),$$

where  $C_0 := \max_{1 \le j \le 2l} |\phi_j^k(x)|$ . Hence,

(3.3) 
$$\phi_n^k(x) \le 2C_0 + \sum_{i=0}^{(s-1)l-1} \frac{1}{l} \phi_l^k(T^i(x)) \le 4C_0 + \sum_{i=0}^{n-1} \frac{1}{l} \phi_l^k(T^i(x)).$$

Set  $C := \max\{4C_0, 2||\frac{1}{l}\phi_l^k|| + \eta\}$ . Then, combining (3.1), (3.2) and (3.3), we have

$$\sup_{y \in B_{n,\Gamma}(g;x,\epsilon)} f_n(y) \leq \sup_{y \in B_{n,\Gamma}(g;x,\epsilon)} \left( \phi_n^k(y) + \frac{n}{k} \right)$$

$$\leq \sup_{y \in B_{n,\Gamma}(g;x,\epsilon)} \left( 4C_0 + \sum_{i=0}^{n-1} \frac{1}{i} \phi_l^k(T^i(y)) + \frac{n}{k} \right)$$

$$\leq 4C_0 + \frac{n}{k} + \sum_{i=0}^{n-1} \left( \frac{1}{i} \phi_l^k(T^i(x)) + \eta \right) + \frac{(\gamma_{n-1}^*)^{-1}}{n} \left( 2||\frac{1}{i} \phi_l^k|| + \eta \right) g(n,\epsilon)$$

$$\leq \sum_{i=0}^{n-1} \left( \frac{1}{i} \phi_l^k(T^i(x)) + \eta \right) + C \left( 1 + \frac{(\gamma_{n-1}^*)^{-1}}{n} g(n,\epsilon) \right) + \frac{n}{k}.$$

This completes the proof.  $\Box$ 

In the following, we first present some definitions.

**Definition 3.6.** Given  $n \ge 1$  and  $\epsilon > 0$ , a set  $F \subseteq X$  is said to be a  $(\Gamma, g, n, \epsilon)$ -spanning set for X if for any  $x \in X$  there exists  $y \in F$  and  $\Lambda \in I_{\Gamma}(g, n, \epsilon)$  such that  $d_{\Lambda}(x, y) \le \epsilon$ . Also, a set  $E \subseteq X$  is said to be a  $(\Gamma, g, n, \epsilon)$ -separated set for X if for any  $x, y \in E, x \ne y$  implies that  $d_{\Lambda}(x, y) > \epsilon$  for any  $\Lambda \in I_{\Gamma}(g, n, \epsilon)$ .

**Definition 3.7.** Given  $0 < \delta < 1$ ,  $n \ge 1$ ,  $\epsilon > 0$  and  $\mu \in E(X,T)$ , a set  $S \subseteq X$  is said to be a  $(\Gamma, g, n, \epsilon, \delta, \mu)$ -spanning set for X, if  $\mu(\bigcup_{x \in S} B_{n,\Gamma}(g, x, \epsilon)) > 1 - \delta$ .

**Definition 3.8.** Let  $T: X \to X$  be a TDS,  $\mathcal{F} = \{f_n\}_{n \ge 1}$  an ASP and  $\Gamma = \{\gamma_{m,n}\}_{m,n \ge 0}$  a probability bi-sequence. Define

$$P_{\Gamma,\mu}(g,T,\mathcal{F}) := \lim_{\delta \to 0} \lim_{\epsilon \to 0} \sup_{n \to +\infty} \frac{1}{n} \log P_{\Gamma,\mu}(g,T,\mathcal{F},n,\epsilon,\delta)$$

where,

$$P_{\Gamma,\mu}(g,T,\mathcal{F},n,\epsilon,\delta) := \inf\{\sum_{x\in S} \exp(\sup_{y\in B_{n,\Gamma}(g,x,\epsilon)} f_n(y)) : S \text{ is a } (\Gamma,g,n,\epsilon,\delta,\mu) - \text{spanning set for } X\}.$$

Before we proceed, we review the following lemma.

**Lemma 3.9.** ([10], Appendix II, Lemma 1) For each  $\eta > 0$ , there exists  $0 < \gamma \leq \eta$ , a finite partition  $\xi = \{C_1, C_2, \dots, C_m\}$  and a finite open cover  $\mathcal{U} = \{U_1, U_2, \dots, U_k\}$  of X, where  $k \geq m$ , such that the following properties hold:

(1) diam $(U_i) \leq \eta$  and diam $(C_j) \leq \eta$ ,  $1 \leq i \leq k$ ,  $1 \leq j \leq m$ . (2)  $\overline{U_i} \subset C_i$ ,  $1 \leq i \leq m$  where  $\overline{U_i}$  denotes the closure of the set  $U_i$ . (3)  $\mu(C_i \setminus U_i) \leq \gamma$ ,  $1 \leq i \leq m$  and  $\mu(\bigcup_{i=m+1}^k U_i) \leq \gamma$ . (4)  $2\gamma \log m < \eta$ .

 $(4) \ 2 \ 10g \ m \le \eta.$ 

Now, we are ready to state and prove our main result.

**Theorem 3.10.** Let  $T: X \to X$  be a TDS,  $0 < \delta < 1$ , g a mistake function,  $\mu \in E(X,T)$ ,  $\mathcal{F} = \{f_n\}_{n\geq 1}$  an ASP such that  $\mathcal{F}_*(\mu) \neq -\infty$  and  $\Gamma = \{\gamma_{m,n}\}_{m,n\geq 0}$  a probability bi-sequence with  $K := \limsup_{n\to+\infty} \frac{(\gamma_n^*)^{-1}}{n} < +\infty$ . Then,

$$P_{\Gamma,\mu}(g,T,\mathcal{F}) = \lim_{\epsilon \to 0} \limsup_{n \to +\infty} \frac{1}{n} \log P_{\Gamma,\mu}(g,T,\mathcal{F},n,\epsilon,\delta) = h_{\mu}(T) + \mathcal{F}_{*}(\mu).$$

*Proof.* Let  $k \ge 1$ ,  $l \ge 1$  and  $\eta > 0$  be given.

Step 1. Since  $B_n(x,\epsilon) \subseteq B_{n,\Gamma}(g,x,\epsilon)$ , each  $(n,\epsilon,\delta,\mu)$ -spanning set is a  $(\Gamma, g, n,\epsilon,\delta,\mu)$ -spanning set and so,

$$\begin{aligned} P_{\Gamma,\mu}(g,T,\mathcal{F},n,\epsilon,\delta) &\leq \inf\{\sum_{x\in S} (\sup_{y\in B_{n,\Gamma}(g,x,\epsilon)} f_n(y)) : S \text{ is an } (n,\epsilon,\delta) - \text{spanning set for } X\} \\ &\leq \exp\{n(\eta + \frac{1}{k}) + C\left(1 + \frac{(\gamma_{n-1}^*)^{-1}}{n}g(n,\epsilon)\right)\} \\ &\times \inf\{\sum_{x\in S} \exp\{\sum_{i=0}^{n-1} \frac{1}{l}\phi_l^k(T^i(x))\} : S \text{ is an } (n,\epsilon,\delta) - \text{spanning set for } X\} \end{aligned}$$

Therefore,

$$\frac{1}{n}\log P_{\Gamma,\mu}(g,T,\mathcal{F},n,\epsilon,\delta) \leq \eta + \frac{1}{k} + \frac{C}{n}\left(1 + \frac{(\gamma_{n-1}^*)^{-1}}{n}g(n,\epsilon)\right) \\
+ \frac{1}{n}\log\inf\{\sum_{x\in S}\exp\{\sum_{i=0}^{n-1}\frac{1}{l}\phi_l^k(T^i(x))\}: S \text{ is an } (n,\epsilon,\delta) - \text{spanning set for } X\}$$

where C is as in Lemma 3.5. Since  $K := \limsup_{n \to +\infty} \frac{(\gamma_{n-1}^*)^{-1}}{n} < +\infty$ , letting  $n \to +\infty$ ,  $\epsilon \to 0$  and applying Theorem 2.1 in [7], we conclude that,

$$P_{\Gamma,\mu}(g,T,\mathcal{F}) \leq \eta + \frac{1}{k} + h_{\mu}(T) + \int_{X} \frac{1}{l} \phi_{l}^{k}(x) d\mu(x).$$

Finally, letting  $l \to +\infty$ ,  $k \to +\infty$  and using the fact that  $\eta > 0$  is arbitrary, we will have

$$P_{\Gamma,\mu}(g,T,\mathcal{F}) \le h_{\mu}(T) + \mathcal{F}_{*}(\mu).$$

Step 2. We show that

$$\lim_{\epsilon \to 0} \liminf_{n \to +\infty} \frac{1}{n} \log P_{\Gamma,\mu}(g, T, \mathcal{F}, \epsilon, \delta) \ge h_{\mu}(T) + \mathcal{F}_{*}(\mu).$$

To do this, we need to modify the method used in [4]. Let  $0 < \eta < 1 - \delta$  be given. By Lemma 3.9, there exists  $0 < \gamma \leq \eta$ , a finite Borel partition  $\xi = \{C_1, C_2, \dots, C_m\}$  and a finite open cover  $\mathcal{U} = \{U_1, U_2, \dots, U_k\}$  with  $k \geq n$  such that,

1. diam $(\xi) \leq \eta$  and diam $(\mathcal{U}) \leq \eta$ . 2.  $\overline{U}_i \subset C_i$  for  $1 \leq i \leq m$ . 3.  $\mu(C_i \setminus U_i) \leq \gamma$ , for  $1 \leq i \leq m$  and  $\mu(\bigcup_{i=m+1}^k U_i) \leq \gamma$ . 4.  $2\gamma \log m \leq \eta$ .

Fix a set  $Z \subseteq X$  with  $\mu(Z) \ge 1 - \delta$  and set  $t_n(x) := |\{0 \le l < n : T^l(x) \in \bigcup_{i=m+1}^k U_i\}|$ . Since  $\mu \in E(X,T)$ , as in the proof of Theorem 2.3 in [4], applying the Birkhöff's ergodic theorem, the Shannon-McMillan-Brieman theorem, the sub-additive and ergodic Egorov's ergodic theorem, there exists  $A \subseteq Z$  and  $N \ge 1$  with  $\mu(A) \ge \mu(Z) - \gamma$  such that for every  $x \in A$  and  $n \ge N$ ,

1<sup>\*</sup>. 
$$t_n(x) \le 2\gamma n$$
.  
2<sup>\*</sup>.  $\mu(\xi_n(x)) \le \exp\{-(h_\mu(T,\xi) - \gamma)n\}.$   
3<sup>\*</sup>.  $\mathcal{F}_*(\mu) - \gamma \le \frac{1}{n} f_n(x) \le \mathcal{F}_*(\mu) + \gamma,$ 

where  $\xi_n := \bigvee_{i=0}^{n-1} T^{-i}\xi$ . In light of part 2<sup>\*</sup>, for any  $n \ge N$ , we have  $|\xi_n^*| \ge \mu(A) \exp\{(h_\mu(T,\xi) - \gamma)n\}$  where  $\xi_n^* := \{C \in \xi_n : C \cap A \ne \emptyset\}$ . Assume that S is a  $(\Gamma, g, n, \epsilon)$ -spanning set for Z. Obviously, S is a  $(\Gamma, g, n, \epsilon, \delta\mu)$  spanning set for X. If we set  $S' := \{x \in S : \overline{B}_{n,\Gamma}(g, x, \epsilon) \cap A \ne \emptyset\}$ , then  $A \subseteq \bigcup_{x \in S'} \overline{B}_{n,\Gamma}(g, x, \epsilon)$ .

Now, fix  $x \in S'$  and set

$$\mathcal{Q}_{n,\epsilon} := \{ \Lambda_x \in I_{\Gamma}(g, n, \epsilon) : \overline{B}_{n,\Gamma}(g, x, \epsilon) \cap A \neq \emptyset \}.$$

Since  $\gamma_{n-1}^* := \min_{0 \le i \le n-1} \gamma_{i,n-1}$ , one may easily see that  $|\Lambda_x^c| \le \frac{(\gamma_{n-1}^*)^{-1}}{n} g(n,\epsilon)$ . Set  $\xi_{\Lambda_x} := \bigvee_{j \in \Lambda_x} T^{-j} \xi$  and denote by  $N(x, \Lambda_x)$ , the number of atoms of  $\xi_{\Lambda_x}$  which intersect  $A \cap \overline{B}_{\Lambda_x}(x,\epsilon)$ .

Let also  $N(x,\xi_n)$  denotes the number of atoms of  $\xi_n$  which intersect  $A \cap \overline{B}_{\Lambda_x}(x,\epsilon)$ . In light of part 1<sup>\*</sup> above, we have  $N(x,\Lambda_x) \leq m^{2\gamma n}$  and so,

$$N(x,\xi_n) \le N(x,\Lambda_x) m^{\frac{(\gamma_{n-1}^*)^{-1}}{n}g(n,\epsilon)} \le m^{2\gamma n + \frac{(\gamma_{n-1}^*)^{-1}}{n}g(n,\epsilon)}.$$

Hence,

$$|\xi_n^*| \le \sum_{x \in S'} N(x, \xi_n) \le |S'| \exp\{(2\gamma n + \frac{(\gamma_{n-1}^*)^{-1}}{n}g(n, \epsilon)) \log m\}$$

Therefore,

$$\begin{split} \sum_{x \in S} \exp\left(\sup_{y \in B_{n,\Gamma}(g,x,\epsilon)} f_n(y)\right) &\geq \sum_{x \in S} \exp\left(\sup_{y \in B_{n,\Gamma}(g,x,\epsilon)} f_n(y)\right) \\ &\geq |S'| \exp\{n(\mathcal{F}_*(\mu) - \gamma)\} \\ &\geq \mu(A) \exp\{(h_\mu(T,\xi) + \mathcal{F}_*(\mu) - 2\gamma)n - \left(2\gamma n + \frac{(\gamma_{n-1}^*)^{-1}}{n}g(n,\epsilon)\right)\log m\} \end{split}$$

This easily results in

$$\frac{1}{n}\log P_{\Gamma,\mu}(g,T,\mathcal{F},n,\epsilon,\delta) \ge \frac{1}{n}\log\mu(A) + h_{\mu}(T,\xi) + \mathcal{F}_{*}(\mu) - 2\gamma - \left(2\gamma + \frac{(\gamma_{n-1}^{*})^{-1}}{n}\frac{g(n,\epsilon)}{n}\right)\log m$$

Letting  $n \to +\infty$  and  $\epsilon \to 0$ , since  $\eta > 0$  is arbitrary and  $K := \limsup_{n \to +\infty} \frac{(\gamma_n^*)^{-1}}{n} < +\infty$ , we will have

$$\lim_{\epsilon \to 0} \liminf_{n \to +\infty} \frac{1}{n} \log P_{\Gamma,\mu}(g, T, \mathcal{F}, \epsilon, \delta) \ge h_{\mu}(T) + \mathcal{F}_{*}(\mu),$$

which completes the proof.  $\Box$ 

### 4. Weighted metrics and topological pressure

In this section, we define topological version of the concepts defined in the previous section. As in the previous section, let  $T: X \to X$  be a TDS,  $\Gamma = \{\gamma_{m,n}\}_{m,n\geq 0}$  be a probability bisequence and  $\mathcal{F} = \{f_n\}_{n\geq 1}$  be an ASP.

**Definition 4.1.** Given  $\epsilon > 0$  and  $n \in \mathbb{N}$ , set

$$P_{\Gamma}(T, \mathcal{F}, n, \epsilon) := \sup\{\sum_{y \in E} e^{f_n(y)} : E \text{ is a } (\Gamma, n, \epsilon) - \text{separated set for } X\}.$$

Then, we define

$$P_{\Gamma}(T,\mathcal{F}) := \lim_{\epsilon \to 0} \limsup_{n \to +\infty} \frac{1}{n} \log P_{\Gamma}(T,\mathcal{F},n,\epsilon).$$

We also set

$$P_{\Gamma}^*(T, \mathcal{F}, n, \epsilon) := \inf\{\sum_{x \in F} \exp\{\sup_{y \in B_{n,\Gamma}(x, \epsilon)} f_n(y)\} : F \text{ is a } (\Gamma, n, \epsilon) - \text{spanning set for } X\},\$$

and

$$P^*_{\Gamma}(T,\mathcal{F}) := \lim_{\epsilon \to 0} \limsup_{n \to +\infty} \frac{1}{n} \log P^*_{\Gamma}(T,\mathcal{F},n,\epsilon).$$

**Definition 4.2.** Let g be a mistake function on X. Given  $\epsilon > 0$  and  $n \in \mathbb{N}$ , set

$$P_{\Gamma}(g,T,\mathcal{F},n,\epsilon) := \sup\{\sum_{x \in E} e^{f_n(x)} : E \text{ is a } (\Gamma,g,n,\epsilon) - \text{separated set for } X\},\$$

and then define

$$P_{\Gamma}(g,T,\mathcal{F}) := \lim_{\epsilon \to 0} \limsup_{n \to +\infty} \frac{1}{n} \log P_{\Gamma}(g,T,\mathcal{F},n,\epsilon)$$

Set also,

$$P_{\Gamma}^*(g,T,\mathcal{F},n,\epsilon) := \inf\{\sum_{x \in F} \exp\{\sup_{y \in B_{n,\Gamma}(g,x,\epsilon)} f_n(y)\} : F \text{ is a } (\Gamma,g,n,\epsilon) - \text{spanning set for } X\},$$

and define

$$P_{\Gamma}^*(g,T,\mathcal{F}) := \lim_{\epsilon \to 0} \limsup_{n \to +\infty} \frac{1}{n} \log P_{\Gamma}^*(g,T,\mathcal{F},n,\epsilon).$$

The proof of the following theorem is similar to the proof of Proposition 1 in [4], replacing  $(n, \epsilon)$ -separated sets by  $(\Gamma, n, \epsilon)$ -separated sets and  $(n, \epsilon)$ -spanning sets by  $(\Gamma, n, \epsilon)$ -spanning sets.

**Theorem 4.3.** Let  $T: X \to X$  be a TDS,  $\Gamma = \{\gamma_{m,n}\}_{m,n\geq 0}$  be a probability bi-sequence and  $\mathcal{F} = \{f_n\}_{n\geq 1}$  be an ASP. Then  $P^*_{\Gamma}(T, \mathcal{F}) = P_{\Gamma}(T, \mathcal{F})$ .

We also have the following theorem.

**Theorem 4.4.** Let  $T: X \to X$  be a TDS,  $\Gamma = {\gamma_{m,n}}_{m,n\geq 0}$  be a probability bi-sequence and  $\mathcal{F} = {f_n}_{n\geq 1}$  be an ASP. Then  $P_{\Gamma}(T, \mathcal{F}) = P(T, \mathcal{F})$ .

*Proof.* Let E be a  $(\Gamma, n, \epsilon)$ -separated set for X. Then, E is also an  $(n, \epsilon)$ -separated set for X. So,

$$P_{\Gamma}(T,\mathcal{F},n,\epsilon) \leq \sup\{\sum_{x \in E} e^{f_n(x)} : E \text{ is an } (n,\epsilon) - \text{sepatrated set for } X\} = P(T,\mathcal{F},n,\epsilon).$$

This easily results in  $P_{\Gamma}(T, \mathcal{F}, n, \epsilon) \leq P(T, \mathcal{F}, n, \epsilon).$ 

Conversely, let  $\mu \in E(X,T)$  and  $0 < \delta < 1$ . Let F be a  $(\Gamma, n, \epsilon)$ -spanning set for X. Then F is a  $(\Gamma, n, \epsilon, \delta, \mu)$ -spanning set for X. Therefore,  $P_{\Gamma}^*(T, \mathcal{F}, n, \epsilon) \geq P_{\Gamma,\mu}(T, \mathcal{F}, n, \epsilon, \delta)$ . Applying Theorem 4.3, we have

$$P_{\Gamma}^*(T,\mathcal{F}) = P_{\Gamma}(T,\mathcal{F}) \ge h_{\mu}(T) + \mathcal{F}_*(\mu).$$

Taking supremume over all  $\mu \in E(X,T)$ , and applying Theorem 2.1, we conclude that  $P_{\Gamma}(T,\mathcal{F}) \geq P(T,\mathcal{F})$ , which completes the proof.  $\Box$ 

**Theorem 4.5.** Let  $T : X \to X$  be a TDS, g a mistake function on X,  $\Gamma = \{\gamma_{m,n}\}_{m,n\geq 0}$  a probability bi-sequence and  $\mathcal{F} = \{f_n\}_{n\geq 1}$  an ASP. Then  $P_{\Gamma}(g,T,\mathcal{F}) = P_{\Gamma}(T,\mathcal{F})$ .

*Proof.* Since each  $(\Gamma, g, n, \epsilon)$ -separated set is a  $(\Gamma, n, \epsilon)$ -separated set then,

$$P_{\Gamma}(g, T, \mathcal{F}, n, \epsilon) \leq \sup\{\sum_{y \in E} e^{f_n(y)} : E \text{ is a } (\Gamma, n, \epsilon) - \text{separated set for } X\} = P_{\Gamma}(T, \mathcal{F}, n, \epsilon),$$

and consequently,  $P_{\Gamma}(g, T, \mathcal{F}) \leq P_{\Gamma}(T, \mathcal{F}).$ 

Now, let  $\mu \in E(X,T)$  with  $\mathcal{F}_*(\mu) \neq -\infty$ . Since each  $(\Gamma, g, n, \epsilon)$ -spanning set is a  $(\Gamma, g, n, \epsilon, \delta, \mu)$ spanning set, then  $P^*_{\Gamma}(g,T,\mathcal{F},n,\epsilon) \geq P_{\Gamma,\mu}(g,T,\mathcal{F},n,\epsilon,\delta)$ . Applying Theorems 3.10 and 4.4, we conclude that

(4.1) 
$$P_{\Gamma}^*(g,T,\mathcal{F}) \ge h_{\mu}(T) + \mathcal{F}_*(\mu).$$

Given  $n \in \mathbb{N}$  and  $\epsilon > 0$ , one may choose a set  $D = \{x_1, x_2, \cdots, x_k\} \subseteq X$  such that,

- (i)  $x_m \in X \setminus \bigcup_{i=1}^{m-1} B_{n,\Gamma}(g, x, \epsilon)$  for  $2 \le m \le k$ . (ii)  $f_n(x_1) = \sup_{x \in X} f_n(x)$  and  $f_n(x_m) = \sup_{x \in X \setminus \bigcup_{i=1}^{m-1} B_{n,\Gamma}(g, x, \epsilon)} f_n(x)$  for  $2 \le m \le k$ .

Clearly D is a maximal  $(\Gamma, g, n, \epsilon)$ -separated set for X and so a  $(\Gamma, g, n, \epsilon)$ -spanning set for X. Consequently,

$$P_{\Gamma}^{*}(g, T, \mathcal{F}, n\epsilon) \leq \sum_{x \in D} \exp\left(\sup_{y \in B_{n,\Gamma}} f_{n}(y)\right)$$
  
= 
$$\sum_{x \in D} e^{f_{n}(x)} \leq \sup\{\sum_{x \in E} e^{f_{n}(x)} : E \text{ is a } (\Gamma, g, n, \epsilon) - \text{separated set for } X\}$$
  
= 
$$P_{\Gamma}(g, T, \mathcal{F}, n, \epsilon).$$

This easily results in

(4.2) 
$$P_{\Gamma}^*(g, T, \mathcal{F}) \le P_{\Gamma}(g, T, \mathcal{F}).$$

Combining (4.1) and (4.2), we obtain  $P_{\Gamma}(g,T,\mathcal{F}) \geq h_{\mu}(T) + \mathcal{F}_{*}(\mu)$ . Finally, applying Theorems 4.4 and 2.1, we will have  $P_{\Gamma}(g,T,\mathcal{F}) \geq P_{\Gamma}(T,\mathcal{F})$  which completes the proof.  $\Box$ 

**Remark 4.6.** One should note that, the special case  $\Gamma_0 = \{\gamma_{m,n}\}_{m,n\geq 0}$  with  $\gamma_{m,n} = \frac{1}{n+1}$ results in mean metric  $\widehat{d}_n(x,y) := \frac{1}{n} \sum_{i=0}^{n-1} d(T^i(x), T^i(y))$ . So, applying Theorem 3.10 with  $\Gamma_0$  and  $g(n,\epsilon) = n\epsilon$  also extends the results in [9] for ASP potentials.

### Acknowledegement

The authors would like to thank the referees for their comprehensive and useful comments which helped to improve this work to the present form.

#### References

- [1] L. M. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergodic Theory Dynam. Systems 16 (1996) 871–927.
- [2] R. Bowen, Hausdorff dimension of quasi-circles, Inst. Hautes Etudes Sci. Publ. Math. 50 (1979) 11–25.
- [3] Y. Cao, Dejun Feng, Wen Huang, The thermodynamic formalism for sub-additive potentials, Discrete Contin. Dynam. Syst. Ser. A 20 (3) (2008) 639-657.
- [4] W. C. Cheng, Y. Zhao, Y. Cao, Pressures for asymptotically sub-additive potentials under a mistake function, Discrete Contin. Dynam. Syst. 32 (2) 487-497.
- [5] K. J. Falconer, A sub-additive thermodynamic formalism for mixing repellers, J. Phys. A 21 (1988) L737-L742.
- [6] D. Feng, W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials, Commun. Math. Phys., **297** (2010), 1-43.
- [7] L. He, J. Lv and L. Zhou, Definition of measure-theoretic pressure using spanning sets, Acta Math. Sinica, Engl. Ser., 20 (2004), 709-718.
- [8] P. Huang, E. Chen, C. Wang, Entropy formulae of conditional entropy in mean metrics, Discrete and Continuous Dynamical Systems, 38, No. 10 (2018), 5129-5144.
- [9] P. Huang, C. Wang, Measure-theoretic pressure and topological pressure in mean metrics, Dynamical Systems, 34 (2), 259-273.

- [10] Y. Pesin, Dimension theory in dynamical systems, Contemporary Views and Applications, University of Chicago Press, Chicago, 1997.
- [11] C. Pfister and W. Sullivan, On the topological entropy of saturated sets, Ergodic Theory Dynam. Systems, 27 (2007), 929-956.
- [12] C. Pfister and W. Sullivan, Large deviations estimates for dynamical systems without the specification property. Application to the  $\beta$ -shifts, Nonlinearity, **18** (2005), 237-261.
- [13] M. Rahimi, A. Ghodrati, On pressure of dynamical systems induced by probability bi-sequences, Submitted.
- [14] M. Rahimi, N. Bidabadi, A formula of conditional entropy for metrics induced by probability bi-sequences, Submitted.
- [15] D. Ruelle, Statistical mechanics on a compact set with Z<sup>ν</sup> action satisfying expansiveness and specification, Trans. Amer. Math. Soc. 187 (1973) 237–251.
- [16] D. J. Thompson, Irregular sets, the beta-transformation and the almost specification property, Trans. Amer. Math. Soc. 367 (10) 5395-5414.
- [17] P. Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1975) 937–971.
- [18] Y. Zhao, Y. Cao, Measure-theoretic pressure for sub-additive potentials, Nonlinear Analysis 70 (2009) 2237–2247.

(Mehdi Rahimi) DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF QOM, QOM, IRAN.

Email address: m10.rahimi@gmail.com

(Nahid Bidabadi) Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran.

Email address: n\_bidabadi90@yahoo.com