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Abstract. In this paper, we use some bi-sequences of positive numbers to define weighted
dynamical metrics. Then we show that, replacing the Bowen dynamical metric by the
weighted metric, the definition of pressure for asymptotically sub-additive potentials, in-
cluding measure-theoretic and topological, is not affected. This generalizes some known
results for pressure, defined using mean metrics and continuous potentials.
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1. Introduction

The concepts of measure-theoretic and topological pressure of a topological dynamical
system are introduced by Ruelle [15] and Walters [17] and are applied in formulation of the
thermodynamic formalism in ergodic theory, dynamical systems and dimension theory [2, 10].

These concepts are extended for sub-additive potentials [1, 3, 5] and asymptotically sub-
additive potentials with mistake functions [18].

The definition of measure-theoretic and topological pressure for continuous, sub-additive
and asymptotically sub-additive potentials are mainly given, using the Bowen metric

dn(x, y) := max{d(T i(x), T i(y)) : 0 ≤ i ≤ n− 1} (x, y ∈ X, n ∈ N).
and its corresponding dynamical ball

Bn(x, ϵ) = {y ∈ X : dn(x, y) < ϵ}.
More precisely, the concepts of (n, ϵ)-separated and spanning sets, applied in the definition
of measure-theoretic and topological pressure, are based on the Bowen metric.

In [9], the definition of measure-theoretic and topological pressure for continuous potentials
are formulated using the mean metric

d̂n(x, y) :=
1

n

n−1∑
i=0

d(T i(x), T i(y)) (x, y ∈ X, n ∈ N).

The idea of replacing the Bowen metric by the mean metric is also applied for the entropy of
dynamical systems [8]. In [13, 14], the concept of mean metric is generalized to a more general
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family of weighted metrics dn,Γ, induced by a probability bi-sequence Γ = {γm,n}m,n≥0 ⊂ R,
in the sense that

∑n
i=0 γi,n = 1 for any n ∈ N, and are applied for the pressure and conditional

entropy of a dynamical system.

In this paper, we attempt to formulate the measure-theoretic and topological pressure for
asymptotically sub-additive potentials, using the weighted metric dn,Γ induced by a proba-
bility bi-sequence. We show that, the quantities defined via the metric dn,Γ coincide to the
ones defined via the Bowen metric dn.

In Section 2, we present some preliminary concepts and results which are used in this paper.
In Section 3, we formulate the measure-theoretic pressure for asymptotically sub-additive po-
tentials, using the weighted metrics. In Section 4, we formulate the topological pressure for
asymptotically sub-additive potentials, using the weighted metrics. Section 5 is a discussion
and concluding remarks.

In the rest of the paper, a topological dynamical system (abbreviated by TDS) is a contin-
uous map T : X → X on a compact metric space X. The space X is naturally equipped by
the Borel σ-algebra. The set of T -invariant and T -ergodic probability measures are denoted
by M(X,T ) and E(X,T ) respectively.

2. Preliminary concepts and facts

In this section, we review some preliminary facts which are required for the rest of the
paper. Let dn be the Bowen metric and Bn(x, ϵ) the corresponding ball centered at x and
with radius ϵ. Given Z ⊆ X, n ∈ N and ϵ > 0, A subset F ⊆ Z is an (n, ϵ)-spanning set for Z
if for any x ∈ Z, there exists y ∈ F such that dn(x, y) ≤ ϵ. A set E ⊆ Z is an (n, ϵ)-separated
set for Z if for any x, y ∈ E with x ̸= y implies dn(x, y) > ϵ. Given δ > 0 and µ ∈ M(X,T ),
a set S is an (n, ϵ, δ)-spanning set if µ(

∪
x∈S Bn(x, ϵ)) > 1− δ.

A sequence of continuous real valued functions F = {fn}n≥1 is an asymptotically sub-
additive potential (abbreviated by ASP) on X, if for each k ≥ 1 there exists a sub-additive
potential Φk = {ϕk

n}n≥1, in the sense that, ϕk
n+m(x) ≤ ϕk

n(x)+ϕk
m(Tn(x)), ∀x ∈ X, ∀m,n ∈ N,

such that
lim sup
n→+∞

1

n
||fn − ϕk

n|| <
1

k
,

where ||fn−ϕk
n|| := supx∈X |fn(x)−ϕk

n(x)|. In [6], the asymptotically sub-additive topological
pressure of T with respect to F is defined as follows:

P (T,F) := lim
ϵ→0

lim sup
n→+∞

1

n
logP (T,F , n, ϵ)

where,

(2.1) P (T,F , n, ϵ) := sup{
∑
y∈E

efn(y) : E is an (n, ϵ)− separated subset for X}.

If F = {fn}n≥1 is an ASP, given µ ∈ M(X,T ), set

F∗(µ) := lim
n→+∞

∫
X
fndµ.
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When µ ∈ E(X,T ), the limit above exists µ-almost everywhere without integrating with
respect to µ [6]. Indeed one may easily see that F∗(µ) = limk→+∞ limn→+∞

1
n

∫
X ϕk

ndµ. We
have the following variational principle [6].

Theorem 2.1. Let T : X → X be a TDS, and F = {fn}n≥1 an ASP. Then,

P (T,F) =

{
−∞ if F∗(µ) = −∞ for all µ ∈ M(X,T )
sup{hµ(T ) + F∗(µ) : µ ∈ M(X,T ), F∗(µ) ̸= −∞} otherwise

Remark 2.2. Note that, In light of the ergodic decomposition for T -invariant measures and
the Jacob’s theorem, the supremum on the right hand side of the previous equality may be
taken over all µ ∈ E(X,T ).

Before we proceed, we review the concept of mistake function which will be used in the
definition of Γ-mistake balls as a generalization of the mistake balls [11, 12, 16].

Definition 2.3. Given ϵ0 > 0, a function g : N× (0, ϵ0] → N is called a mistake function if for
every ϵ ∈ (0, ϵ0] and n ∈ N, g(n, ϵ) ≤ g(n+ 1, ϵ) and limn→+∞

g(n,ϵ)
n = 0. Note that, one may

extend the definition of a mistake function on all positive real line by setting g(n, ϵ) = g(n, ϵ0)
for ϵ > ϵ0.

The measure-theoretic and topological pressures for asymptotic sub-additive potentials
under a mistake function are defined in [4]. These quantities are also connected together
via a variational principle. (See Corollary 1 in [4]). It is proved that, the pressures under
a mistake function coincides to the corresponding quantities in the absence of any mistake
function. (See Theorems 2.3 and 2.4 in [4]).

In Sections 3 and 4, we extend the results in [4], for the pressures defined using a family of
weighted metrics including the mean metric.

3. Weighted metrics and measure-theoretic pressure

In this section, we define weighted metrics corresponding to a probability bi-sequence. We
first review the concept of probability bi-sequence.

Definition 3.1. A sequence Γ = {γm,n}m,n≥0 is said to be a probability bi-sequence if∑n
i=0 γi,n = 1 for all n ≥ 1.

Example 3.2. Γ0 = {γm,n}m,n≥0 with γm,n = 1
n+1 is a probability bi-sequence. Also, given

every sequence of positive numbers {an}n≥0, if Sn :=
∑n

j=0 aj , then Γ1 = {γm,n}m,n≥0 with
γm,n := am

Sn
is a probability bi-sequence.

Definition 3.3. Let T : X → X be a compact dynamical system and Γ = {γm,n}m,n⩾0 be a
probability bi-sequence. Given n ∈ N and x, y ∈ X, set:

dn,Γ(x, y) :=

n−1∑
i=0

γi,n−1d(T
i(x), T i(y)).

Obviously, dn,Γ is a metric on X. For ϵ > 0, x ∈ X and n ∈ N, the (Γ, n)-ball centered at x
with radius ϵ and length n is defined by

Bn,Γ(x, ϵ) :=
{
y ∈ X : dn,Γ(y, x) < ϵ

}
.
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Note that, if Γ0 = {γm,n}m,n≥0 with γm,n = 1
n+1 then dn,Γ0 = d̂n is the mean metric.

Given n ≥ 1 and ϵ > 0, a subset F ⊆ X is said to be a (Γ, n, ϵ)-spanning set if for any
x ∈ X there exists y ∈ F such that dn,Γ(x, y) ≤ ϵ. Also, a subset E ⊆ X is said to be a
(Γ, n, ϵ)-separated set if x, y ∈ E and x ̸= y implies dn,Γ(x, y) > ϵ.

Let µ ∈ E(X,T ). For 0 < δ < 1, n ≥ 1 and ϵ > 0, a set F ⊆ X is called a (Γ, µ, n, ϵ, δ)-
spanning set if µ(

∪
x∈F Bn,Γ(x, ϵ)) ≥ 1− δ.

Let Λn := {0, 1, 2, · · · , n−1}. Given any subset Λ ⊆ Λn, set dΛ(x, y) := max{d(T i(x), T i(y)) :
i ∈ Λ} and BΛ(x, ϵ) := {y ∈ X : dΛ(x, y) < ϵ}. Now we are ready to define the Γ-mistake
balls.

Definition 3.4. Let T : X → X be a TDS. For n ≥ 1, ϵ > 0 and any probability bi-sequence
Γ = {γm,n}m,n≥0, the Γ-mistake ball with center x ∈ X and radius ϵ and of length n is defined
as follows:

Bn,Γ(g;x, ϵ) := {y ∈ X :

n−1∑
i=0

γi,n−1 χB(T i(x),ϵ)(T
i(y)) > 1− g(n, ϵ)

n
}

=
∪

Λ∈IΓ(g;n,ϵ)

BΛ(x, ϵ),

where

IΓ(g;n, ϵ) := {Λ ⊆ Λn :
∑
i∈Λ

γi,n−1 > 1− g(n, ϵ)

n
}.

The following lemma is an analogous version of Lemma 3.1 in [4].

Lemma 3.5. Let X be a TDS, g a mistake function, F = {fn}n≥1 an ASP and Γ =
{γm,n}m,n≥0 be a probability bi-sequence. Given k ≥ 1, there exists sub-additive potential
Φk = {ϕk

n}n≥1 such that for any l ≥ 1 and small η > 0, there exists ϵ0 > 0 such that for any
0 < ϵ < ϵ0, the following inequalities hold for large n:

sup
y∈Bn,Γ(g;x,ϵ)

fn(y) ≤
n−1∑
i=0

(
1

l
ϕk
l (T

i(x)) + η

)
+ C

(
1 +

(γ∗n−1)
−1

n
g(n, ϵ)

)
+

n

k
,

where γ∗n−1 := min0≤i≤n−1 γi,n−1 and C := max{2||1l ϕ
k
l ||+ η, 4max1≤i≤2l |ϕk

j (x)|}.

Proof. Given k ≥ 1, since F = {fn}n≥1 is an ASP, there exists sub-additive potentials
Φk = {ϕk

n}n≥ such that lim supn→+∞
1
n ||fn − ϕk

n|| < 1
k . This implies that,

fn(x) ≤ ϕk
n(x) +

n

k
∀x ∈ X,

for large n ∈ N. Now, fix any positive integer l ≥ 1. Since 1
l ϕ

k
l is continuous, for every η > 0,

there exists ϵ0 > 0 such that for any ϵ ∈ (0, ϵ0), we have

(3.1) d(x, y) < ϵ =⇒
∣∣∣∣1l ϕk

l (x)−
1

l
ϕk
l (y)

∣∣∣∣ < η.
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For every y ∈ Bn,Γ(g, x, ϵ), there exists Λ ∈ IΓ(g, n, ϵ) such that y ∈ BΛ(x, ϵ). Note that, if
Λ ∈ IΓ(g, n, ϵ) then |Λc| ≤ (γ∗

n−1)
−1

n g(n, ϵ). Therefore,
n−1∑
i=0

1

l
ϕk
l (T

i(y)) =
∑
i∈Λ

1

l
ϕk
l (T

i(y)) +
∑
i/∈Λ

1

l
ϕk
l (T

i(y))

≤
∑
i∈Λ

(
1

l
ϕk
l (T

i(x) + η

)
+
∑
i∈Λc

||1
l
ϕk
l ||

≤
n−1∑
i=0

(
1

l
ϕk
l (T

i(x)) + η

)
+ |Λc|

(
2||1

l
ϕk
l ||+ η

)

≤
n−1∑
i=0

(
1

l
ϕk
l (T

i(x)) + η

)
+

(γ∗n−1)
−1

n

(
2||1

l
ϕk
l ||+ η

)
g(n, ϵ).(3.2)

For n ≥ 1, large enough, one may write n = sl + r where 0 ≤ r < l and s ≥ 0. Then, for
0 ≤ j < l, setting ϕk

0 = 0, we have

ϕk
n(x) ≤ ϕk

j (x) +

s−2∑
i=0

T il(T j(x)) + ϕk
l+r−j(T

(s−1)l(T j(x))).

Summing over j = 0, 1, 2, · · · , l − 1, one has

lϕk
n(x) ≤ 2lC0 +

(s−1)l−1∑
i=0

ϕk
l (T

i(x)),

where C0 := max1≤j≤2l |ϕk
j (x)|. Hence,

(3.3) ϕk
n(x) ≤ 2C0 +

(s−1)l−1∑
i=0

1

l
ϕk
l (T

i(x)) ≤ 4C0 +
n−1∑
i=0

1

l
ϕk
l (T

i(x)).

Set C := max{4C0, 2||1l ϕ
k
l ||+ η}. Then, combining (3.1), (3.2) and (3.3), we have

sup
y∈Bn,Γ(g;x,ϵ)

fn(y) ≤ sup
y∈Bn,Γ(g;x,ϵ)

(
ϕk
n(y) +

n

k

)
≤ sup

y∈Bn,Γ(g;x,ϵ)

(
4C0 +

n−1∑
i=0

1

l
ϕk
l (T

i(y)) +
n

k

)

≤ 4C0 +
n

k
+

n−1∑
i=0

(
1

l
ϕk
l (T

i(x)) + η

)
+

(γ∗n−1)
−1

n

(
2||1

l
ϕk
l ||+ η

)
g(n, ϵ)

≤
n−1∑
i=0

(
1

l
ϕk
l (T

i(x)) + η

)
+ C

(
1 +

(γ∗n−1)
−1

n
g(n, ϵ)

)
+

n

k
.

This completes the proof. □

In the following, we first present some definitions.
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Definition 3.6. Given n ≥ 1 and ϵ > 0, a set F ⊆ X is said to be a (Γ, g, n, ϵ)-spanning set
for X if for any x ∈ X there exists y ∈ F and Λ ∈ IΓ(g, n, ϵ) such that dΛ(x, y) ≤ ϵ. Also, a
set E ⊆ X is said to be a (Γ, g, n, ϵ)-separated set for X if for any x, y ∈ E, x ̸= y implies
that dΛ(x, y) > ϵ for any Λ ∈ IΓ(g, n, ϵ).

Definition 3.7. Given 0 < δ < 1, n ≥ 1, ϵ > 0 and µ ∈ E(X,T ), a set S ⊆ X is said to be a
(Γ, g, n, ϵ, δ, µ)-spanning set for X, if µ(

∪
x∈S Bn,Γ(g, x, ϵ)) > 1− δ.

Definition 3.8. Let T : X → X be a TDS, F = {fn}n≥1 an ASP and Γ = {γm,n}m,n≥0 a
probability bi-sequence. Define

PΓ,µ(g, T,F) := lim
δ→0

lim
ϵ→0

lim sup
n→+∞

1

n
logPΓ,µ(g, T,F , n, ϵ, δ)

where,

PΓ,µ(g, T,F , n, ϵ, δ) := inf{
∑
x∈S

exp( sup
y∈Bn,Γ(g,x,ϵ)

fn(y)) : S is a (Γ, g, n, ϵ, δ, µ)−spanning set for X}.

Before we proceed, we review the following lemma.

Lemma 3.9. ([10], Appendix II, Lemma 1) For each η > 0, there exists 0 < γ ≤ η, a finite
partition ξ = {C1, C2, · · · , Cm} and a finite open cover U = {U1, U2, · · · , Uk} of X, where
k ≥ m, such that the following properties hold:

(1) diam(Ui) ≤ η and diam(Cj) ≤ η, 1 ≤ i ≤ k, 1 ≤ j ≤ m.
(2) Ui ⊂ Ci, 1 ≤ i ≤ m where Ui denotes the closure of the set Ui.
(3) µ(Ci \ Ui) ≤ γ, 1 ≤ i ≤ m and µ(

∪k
i=m+1 Ui) ≤ γ.

(4) 2γ logm ≤ η.

Now, we are ready to state and prove our main result.

Theorem 3.10. Let T : X → X be a TDS, 0 < δ < 1, g a mistake function, µ ∈ E(X,T ),
F = {fn}n≥1 an ASP such that F∗(µ) ̸= −∞ and Γ = {γm,n}m,n≥0 a probability bi-sequence
with K := lim supn→+∞

(γ∗
n)

−1

n < +∞. Then,

PΓ,µ(g, T,F) = lim
ϵ→0

lim sup
n→+∞

1

n
logPΓ,µ(g, T,F , n, ϵ, δ) = hµ(T ) + F∗(µ).

Proof. Let k ≥ 1, l ≥ 1 and η > 0 be given.

Step 1. Since Bn(x, ϵ) ⊆ Bn,Γ(g, x, ϵ), each (n, ϵ, δ, µ)-spanning set is a (Γ, g, n, ϵ, δ, µ)-
spanning set and so,

PΓ,µ(g, T,F , n, ϵ, δ) ≤ inf{
∑
x∈S

( sup
y∈Bn,Γ(g,x,ϵ)

fn(y)) : S is an (n, ϵ, δ)− spanning set for X}

≤ exp{n(η +
1

k
) + C

(
1 +

(γ∗n−1)
−1

n
g(n, ϵ)

)
}

× inf{
∑
x∈S

exp{
n−1∑
i=0

1

l
ϕk
l (T

i(x))} : S is an (n, ϵ, δ)− spanning set for X}.
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Therefore,

1

n
logPΓ,µ(g, T,F , n, ϵ, δ) ≤ η +

1

k
+

C

n

(
1 +

(γ∗n−1)
−1

n
g(n, ϵ)

)
+

1

n
log inf{

∑
x∈S

exp{
n−1∑
i=0

1

l
ϕk
l (T

i(x))} : S is an (n, ϵ, δ)− spanning set for X},

where C is as in Lemma 3.5. Since K := lim supn→+∞
(γ∗

n−1)
−1

n < +∞, letting n → +∞,
ϵ → 0 and applying Theorem 2.1 in [7], we conclude that,

PΓ,µ(g, T,F) ≤ η +
1

k
+ hµ(T ) +

∫
X

1

l
ϕk
l (x)dµ(x).

Finally, letting l → +∞, k → +∞ and using the fact that η > 0 is arbitrary, we will have

PΓ,µ(g, T,F) ≤ hµ(T ) + F∗(µ).

Step 2. We show that

lim
ϵ→0

lim inf
n→+∞

1

n
logPΓ,µ(g, T,F , ϵ, δ) ≥ hµ(T ) + F∗(µ).

To do this, we need to modify the method used in [4]. Let 0 < η < 1− δ be given. By Lemma
3.9, there exists 0 < γ ≤ η, a finite Borel partition ξ = {C1, C2, · · · , Cm} and a finite open
cover U = {U1, U2, · · · , Uk} with k ≥ n such that,

1. diam(ξ) ≤ η and diam(U) ≤ η.
2. U i ⊂ Ci for 1 ≤ i ≤ m.
3. µ(Ci \ Ui) ≤ γ, for 1 ≤ i ≤ m and µ(

∪k
i=m+1 Ui) ≤ γ.

4. 2γ logm ≤ η.
Fix a set Z ⊆ X with µ(Z) ≥ 1 − δ and set tn(x) := |{0 ≤ l < n : T l(x) ∈

∪k
i=m+1 Ui}|.

Since µ ∈ E(X,T ), as in the proof of Theorem 2.3 in [4], applying the Birkhöff’s ergodic
theorem, the Shannon-McMillan-Brieman theorem, the sub-additive and ergodic Egorov’s
ergodic theorem, there exists A ⊆ Z and N ≥ 1 with µ(A) ≥ µ(Z) − γ such that for every
x ∈ A and n ≥ N ,

1∗. tn(x) ≤ 2γn.
2∗. µ(ξn(x)) ≤ exp{−(hµ(T, ξ)− γ)n}.
3∗. F∗(µ)− γ ≤ 1

nfn(x) ≤ F∗(µ) + γ,
where ξn :=

∨n−1
i=0 T−iξ. In light of part 2∗, for any n ≥ N , we have |ξ∗n| ≥ µ(A) exp{(hµ(T, ξ)−

γ)n} where ξ∗n := {C ∈ ξn : C∩A ̸= ∅}. Assume that S is a (Γ, g, n, ϵ)-spanning set for Z. Ob-
viously, S is a (Γ, g, n, ϵ, δµ) spanning set for X. If we set S′ := {x ∈ S : Bn,Γ(g, x, ϵ)∩A ̸= ∅},
then A ⊆

∪
x∈S′ Bn,Γ(g, x, ϵ).

Now, fix x ∈ S′ and set

Qn,ϵ := {Λx ∈ IΓ(g, n, ϵ) : Bn,Γ(g, x, ϵ) ∩A ̸= ∅}.

Since γ∗n−1 := min0≤i≤n−1 γi,n−1, one may easily see that |Λc
x| ≤

(γ∗
n−1)

−1

n g(n, ϵ). Set ξΛx :=∨
j∈Λx

T−jξ and denote by N(x,Λx), the number of atoms of ξΛx which intersect A∩BΛx(x, ϵ).
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Let also N(x, ξn) denotes the number of atoms of ξn which intersect A ∩ BΛx(x, ϵ). In light
of part 1∗ above, we have N(x,Λx) ≤ m2γn and so,

N(x, ξn) ≤ N(x,Λx)m
(γ∗n−1)

−1

n
g(n,ϵ) ≤ m2γn+

(γ∗n−1)
−1

n
g(n,ϵ).

Hence,

|ξ∗n| ≤
∑
x∈S′

N(x, ξn) ≤ |S′| exp{(2γn+
(γ∗n−1)

−1

n
g(n, ϵ)) logm}.

Therefore,∑
x∈S

exp

(
sup

y∈Bn,Γ(g,x,ϵ)
fn(y)

)
≥

∑
x∈S

exp

(
sup

y∈Bn,Γ(g,x,ϵ)
fn(y)

)
≥ |S′| exp{n(F∗(µ)− γ)}

≥ µ(A) exp{(hµ(T, ξ) + F∗(µ)− 2γ)n−
(
2γn+

(γ∗n−1)
−1

n
g(n, ϵ)

)
logm}.

This easily results in

1

n
logPΓ,µ(g, T,F , n, ϵ, δ) ≥ 1

n
logµ(A)+hµ(T, ξ)+F∗(µ)−2γ−

(
2γ +

(γ∗n−1)
−1

n

g(n, ϵ)

n

)
logm.

Letting n → +∞ and ϵ → 0, since η > 0 is arbitrary and K := lim supn→+∞
(γ∗

n)
−1

n < +∞,
we will have

lim
ϵ→0

lim inf
n→+∞

1

n
logPΓ,µ(g, T,F , ϵ, δ) ≥ hµ(T ) + F∗(µ),

which completes the proof. □

4. Weighted metrics and topological pressure

In this section, we define topological version of the concepts defined in the previous section.
As in the previous section, let T : X → X be a TDS, Γ = {γm,n}m,n≥0 be a probability bi-
sequence and F = {fn}n≥1 be an ASP.

Definition 4.1. Given ϵ > 0 and n ∈ N, set

PΓ(T,F , n, ϵ) := sup{
∑
y∈E

efn(y) : E is a (Γ, n, ϵ)− separated set for X}.

Then, we define

PΓ(T,F) := lim
ϵ→0

lim sup
n→+∞

1

n
logPΓ(T,F , n, ϵ).

We also set

P ∗
Γ(T,F , n, ϵ) := inf{

∑
x∈F

exp{ sup
y∈Bn,Γ(x,ϵ)

fn(y)} : F is a (Γ, n, ϵ)− spanning set for X},

and
P ∗
Γ(T,F) := lim

ϵ→0
lim sup
n→+∞

1

n
logP ∗

Γ(T,F , n, ϵ).
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Definition 4.2. Let g be a mistake function on X. Given ϵ > 0 and n ∈ N, set

PΓ(g, T,F , n, ϵ) := sup{
∑
x∈E

efn(x) : E is a (Γ, g, n, ϵ)− separated set for X},

and then define
PΓ(g, T,F) := lim

ϵ→0
lim sup
n→+∞

1

n
logPΓ(g, T,F , n, ϵ).

Set also,

P ∗
Γ(g, T,F , n, ϵ) := inf{

∑
x∈F

exp{ sup
y∈Bn,Γ(g,x,ϵ)

fn(y)} : F is a (Γ, g, n, ϵ)− spanning set for X},

and define
P ∗
Γ(g, T,F) := lim

ϵ→0
lim sup
n→+∞

1

n
logP ∗

Γ(g, T,F , n, ϵ).

The proof of the following theorem is similar to the proof of Proposition 1 in [4], replacing
(n, ϵ)-separated sets by (Γ, n, ϵ)-separated sets and (n, ϵ)-spanning sets by (Γ, n, ϵ)-spanning
sets.

Theorem 4.3. Let T : X → X be a TDS, Γ = {γm,n}m,n≥0 be a probability bi-sequence and
F = {fn}n≥1 be an ASP. Then P ∗

Γ(T,F) = PΓ(T,F).

We also have the following theorem.

Theorem 4.4. Let T : X → X be a TDS, Γ = {γm,n}m,n≥0 be a probability bi-sequence and
F = {fn}n≥1 be an ASP. Then PΓ(T,F) = P (T,F).

Proof. Let E be a (Γ, n, ϵ)-separated set for X. Then, E is also an (n, ϵ)-separated set for
X. So,

PΓ(T,F , n, ϵ) ≤ sup{
∑
x∈E

efn(x) : E is an (n, ϵ)− sepatrated set for X} = P (T,F , n, ϵ).

This easily results in PΓ(T,F , n, ϵ) ≤ P (T,F , n, ϵ).
Conversely, let µ ∈ E(X,T ) and 0 < δ < 1. Let F be a (Γ, n, ϵ)-spanning set for X.

Then F is a (Γ, n, ϵ, δ, µ)-spanning set for X. Therefore, P ∗
Γ(T,F , n, ϵ) ≥ PΓ,µ(T,F , n, ϵ, δ).

Applying Theorem 4.3, we have

P ∗
Γ(T,F) = PΓ(T,F) ≥ hµ(T ) + F∗(µ).

Taking supremume over all µ ∈ E(X,T ), and applying Theorem 2.1, we conclude that
PΓ(T,F) ≥ P (T,F), which completes the proof. □

Theorem 4.5. Let T : X → X be a TDS, g a mistake function on X, Γ = {γm,n}m,n≥0 a
probability bi-sequence and F = {fn}n≥1 an ASP. Then PΓ(g, T,F) = PΓ(T,F).

Proof. Since each (Γ, g, n, ϵ)-separated set is a (Γ, n, ϵ)-separated set then,

PΓ(g, T,F , n, ϵ) ≤ sup{
∑
y∈E

efn(y) : E is a (Γ, n, ϵ)− separated set for X} = PΓ(T,F , n, ϵ),

and consequently, PΓ(g, T,F) ≤ PΓ(T,F).
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Now, let µ ∈ E(X,T ) with F∗(µ) ̸= −∞. Since each (Γ, g, n, ϵ)-spanning set is a (Γ, g, n, ϵ, δ, µ)-
spanning set, then P ∗

Γ(g, T,F , n, ϵ) ≥ PΓ,µ(g, T,F , n, ϵ, δ). Applying Theorems 3.10 and 4.4,
we conclude that
(4.1) P ∗

Γ(g, T,F) ≥ hµ(T ) + F∗(µ).

Given n ∈ N and ϵ > 0, one may choose a set D = {x1, x2, · · · , xk} ⊆ X such that,
(i) xm ∈ X \

∪m−1
i=1 Bn,Γ(g, x, ϵ) for 2 ≤ m ≤ k.

(ii) fn(x1) = supx∈X fn(x) and fn(xm) = supx∈X\
∪m−1

i=1 Bn,Γ(g,x,ϵ)
fn(x) for 2 ≤ m ≤ k.

Clearly D is a maximal (Γ, g, n, ϵ)-separated set for X and so a (Γ, g, n, ϵ)-spanning set for
X. Consequently,

P ∗
Γ(g, T,F , nϵ) ≤

∑
x∈D

exp

(
sup

y∈Bn,Γ

fn(y)

)
=

∑
x∈D

efn(x) ≤ sup{
∑
x∈E

efn(x) : E is a (Γ, g, n, ϵ)− separated set for X}

= PΓ(g, T,F , n, ϵ).

This easily results in
(4.2) P ∗

Γ(g, T,F) ≤ PΓ(g, T,F).

Combining (4.1) and (4.2), we obtain PΓ(g, T,F) ≥ hµ(T ) + F∗(µ). Finally, applying Theo-
rems 4.4 and 2.1, we will have PΓ(g, T,F) ≥ PΓ(T,F) which completes the proof. □
Remark 4.6. One should note that, the special case Γ0 = {γm,n}m.n≥0 with γm,n = 1

n+1

results in mean metric d̂n(x, y) :=
1
n

∑n−1
i=0 d(T i(x), T i(y)). So, applying Theorem 3.10 with

Γ0 and g(n, ϵ) = nϵ also extends the results in [9] for ASP potentials.
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