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FUNCTION DERIVATIVE FOR SOLVING NONLINEAR EQUATIONS
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Abstract. The Householder iterative scheme (HIS) for determining solution of equations
that are nonlinear have existed for over fifty decades and have enjoyed several modifications
in literature. However, in most HIS modifications, they usually require function derivative
evaluation in their implementation. Obtaining derivative of some functions is difficult and in
some cases, it is not achievable.To circumvent this setback, the divided difference operator
was utilised to approximate function derivatives that appear in the scheme. This resulted
to the development of a new variant of the HIS with high precision and require no function
derivative. The theoretical convergence of the new scheme was established using Taylor’s
expansion approach. From the computational results obtained when the new scheme was
tested on some non-linear problems in literature, it performed better than the Householder
scheme.
MSC(2010): 65H05; 65L99 .
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1. Introduction
The problem of obtaining the exact solution (θ) of nonlinear equations (NLE) (h(x) = 0)
that are found in diverse fields of science and engineering have attracted the interest of
many researchers. Because of the absence of analytic techniques for solving some NLE, the
numerical approach is resorted. Some of the famous classical numerical iterative scheme (IS)
for obtaining the solution (θ) of NLE are the Newthon-Raphson and Householder iterative
scheme(HIS); see [1]. Some interesting techniques used in the development of diverse IS for
determining θ of NLE can be found in the literature [2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 14] and
some references that appeared in them.
In the implementation of the HIS to solve NLE, one has to evaluate the derivative of function
up to the second order. This is expensive, considering the fact that obtaining derivatives of
some functions can be a daunting task. Furthermore, some functions do not have derivative
or second derivative at some points. This is one major setback of the HIS.
Recently, some authors have applied diverse techniques to modify the HIS by eliminating
the second derivative that appear in it; see [7, 8, 9, 10, 11, 12]. For instance, in Noor and
Gupta [11], the divided difference operator was applied to approximate the second function
derivative in the HIS with the quotient of difference of function derivatives at two separate
points. In the work of Nadeem et al. [8], they utilised the divided difference approach
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together with polynomial approximation technique to annihilate the second derivative in the
HIS. However, not so much has been done toward the modification of the HIS to a scheme that
requires no function derivative. For this reason, this article put forward a modified HIS that
has the advantage of high accuracy and require no need of carrying out function derivative
evaluation.
The structure of this article is arranged such that Section 2 presents the development of
the modified HIS, Section 3 provides its convergence analysis, Section 4 was dedicated to
numerical implementation of the scheme and concluding remarks were made in Section 5.

2. The Iterative Scheme
We begin the Iterative Scheme (IS) development by acknowledging the HIS [1] presented as:

(2.1) xk+1 = xk −
h (xk)

h′ (xk)
− h2 (xk)h

′′ (xk)

2h′3 (xk)
, k = 0, 1, 2, · · · .

The sequence of approximations of the solution θ generated by the HIS (2.1) converges with
order three. However, some of the setbacks of the HIS includes, the scheme requiring func-
tion derivative up to second derivative and high k number of iteration required to achieve
convergence when implemented to solving NLE. To this end, we take steps to annihilate these
setbacks, by putting forward a variant of the HIS. To achieve this, the HIS in (2.1) is rewritten
as:

(2.2) xk+1 = xk −
h (xk)

h′ (xk)
[1 + Γ (xk)] .

where Γ (xk) =
h(xk)h

′′(xk)
2h′2(xk)

.
By estimating the function derivatives (h′ (·)) using divided difference operators h [·, ·], such
that

(2.3) h [xk, β] =
h(β)− h(xk)

β − xk
, β = xk + δh (xk)

m , δ ∈ ℜ − {0} , m ≥ 2,

and the approximation of the quantity Γ (xk) with 1
h(xk)

[
h

(
xk − h(xk)

2

h[xk,β]
[
h(xk)−h

(
xk−

h(xk)

h[xk,β]

)]
)]

,

a variant form of the HIS can be obtained as:

(2.4)

xk+1 = xk −
h (xk)

2

h [xk, β]
[
h(xk)− h

(
xk − h(xk)

h[xk,β]

)] − h (xk)

h [xk, β]
[
h(xk)− h

(
xk − h(xk)

h[xk,β]

)]Λ(xk)
where Λ(xk) = h

(
xk − h(xk)

2

h[xk,β]
[
h(xk)−h

(
xk−

h(xk)

h[xk,β]

)]
)

.

The iterative scheme (2.4) is a modification of the HIS and for this reason it is denoted as
the MHIS. Before some key features of the MHIS are stated, the following definition is first
acknowledged.

Definition 2.1. For an equation ℓk+1 = λℓϕk+O(ℓϕ+1
k ) derived from an IS through the Taylor

series expansion of h(·) and h′(·), such that ℓk = xk − θ is its kth iteration error, then ℓk+1

is called the IS error equation, λ error constant and ϕ convergence order (CO). Furthermore,
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the IS Efficiency index (Eeff ) is calculated as Eeff = ϕ
1
τ , where τ is number of functions

requires to be evaluated in one iteration cycle of the IS.

Remark 2.2. It is paramount to note that, in one complete iteration cycle, the HIS requires
three different functions evaluation including second derivative evaluation and because of
this, its efficiency index EI is 1.4422. On the other hand, the MHIS requires four separate
functions evaluations with no function derivative evaluation to achieve CO four with EI as
1.4142 but with very high convergence precision. The high convergence precision, often will
compensates its low efficiency. This can be observed in the computational implementation of
the MHIS in Section 3.

Next, the convergence criteria for the sequence of approximations produced or generated by
the MHIS is considered in the next section.

3. The MHIS convergence test
This section provides the theoretical convergence of the MHIS. To effectively do this, the
MATHEMATICA 9.0 software was utilised in obtaining Taylor’s expansions of functions that
appeared in the proof. We begin by establishing the criteria for convergence of sequence of
approximations produced by the MHIS when implemented to obtain NLE solutions.

Theorem 3.1. Let the scalar function h : I ⊂ ℜ → ℜ be differentiable sufficiently in I and
assumed that it has a simple solution θ ∈ I. Suppose x0 an initial guess is close to θ, then
the sequence of approximations obtained by the MHIS converge to θ with CO four.

Proof. Suppose ck = h(k)(θ)
k!h′(θ) , k ≥ 2 and set x=xk in the Taylor series expansion of h (x). Then,

(3.1) h(xk) = h′(θ)
[
ℓk + c2ℓ

2
k + c3ℓ

3
k + c4ℓ

4
k +O

(
ℓ5k
)]

,

and
(3.2) h(xk + δh(xk)

3) = h′(θ)
[
ℓk + c2ℓ

2
k + (δ + c3)ℓ

3
k + (5δc2 + c4)ℓ

4
k +O

(
ℓ5k
)]

.

Using (3.1) and (3.2), the next expansion is obtained.

(3.3) h[xk, β] =
[
1 + 2c2ℓk + 3c2ℓ

2
k +O

(
ℓ5k
)]

.

From (3.1) and (3.3), the Taylor’s expansion of h
(
xk − h(xk)

h[xk,β]

)
is derived as:

(3.4)

h

(
xk −

h(θ)

h[xk, β]

)
= h′(xk)

[
c2ℓ

2
k + (−2c22 + 2c3)ℓ

3
k + (δc2 + 5c32 − 7c2c3 + 3c4)ℓ

4
k +O

(
ℓ5k
)]

.

Applying the expansions in (3.1), (3.3) and (3.4), the following two next expressions are
derived.

(3.5)

h (xk)
2

h [xk, β]
[
h(xk)− h

(
xk − h(xk)

h[xk,β]

)] = ℓk − c22ℓ
2
k

+
(
3c32 − 3c2c3

)
ℓ4k +O

(
ℓ5k
)
,
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and

(3.6)

h (xk)

h [xk, β]
[
h(xk)− h

(
xk − h(xk)

h[xk,β]

)] = 1− c2ℓk − c2ℓk

+
(
3c32 − 3c2c3

)
ℓ4k +O

(
ℓ5k
)
.

Using (3.5),

(3.7)
Λ(xk) = h

xk −
h (xk)

2

h [xk, β]
[
h(xk)− h

(
xk − h(xk)

h[xk,β]

)]


= c22ℓ
3
k +

(
−3c32 + 3c2c3

)
ℓ4k +O

(
ℓ5k
)
.

The use of the expansions in (3.5), (3.6) and (3.7) enabled obtaining the next expression.

(3.8)

h (xk)
2

h [xk, β]
[
h(xk) + h

(
xk − h(xk)

h[xk,β]

)] − h (xk)

h [xk, β]
[
h(xk)− h

(
xk − h(xk)

h[xk,β]

)]Λ(xk)
= ℓk − c32ℓ

4
k +O

(
ℓ5k
)
.

By substituting the expansion in (3.8) into (2.3), the next equation is derived.
(3.9) xk+1 = ℓk + θ −

[
ℓk − c32ℓ

4
k +O

(
ℓ5k
)]

.

Consequently, (3.9) is reduced to
(3.10) xk+1 = θ + c32ℓ

4
k +O

(
ℓ5k
)
.

□
From Definition 2.1, ϕ = 4. This indicates that the CO of the IS in (2.3) is four. This brings
the proof to end.

4. The MHIS implementation
This part of the manuscript illustrates how efficient the MHIS is; when used to determine

the solution of NLE. To this end, six NLE recently used in literature [4, 5, 6] were obtained
and also used in testing the developed MHIS with δ = 0.001. These includes the following:

Example 4.1. h(x) = −2 + (x− 1)3 = 0, θ = 2.2599 · · · , see[5].

Example 4.2. h2(x) = 1− x2 + sin2(x) = 0, θ = 1.4044 · · · , see[5, 12].

Example 4.3. h3(x) = x3 + 4x2 − 10 = 0, θ = 1.3652 · · · , see[12].

Example 4.4. h4(x) = −.75e−0.05x + 1 = 0, θ = −5.753 · · · , see[6].

Example 4.5. h5(x) = 5− 5e−x − x = 0, θ = 4.9651 · · · , see[4].

Example 4.6. h6(x) = cos(x)− x = 0, θ = 0.7390 · · · , see[12].

Computation programs written in Maple 2017.0 software environment for the developed MHIS
and the HIS were utilized to obtain solutions θ of the test equations (Example 4.1-4.6). To
achieve better approximation of θ and reduce loss of approximation digits, 3000 digits was
utilized in Maple 2017.0 program execution and the stopping criterion adopted is |h(xk)| <
10−1000. The computation output obtained from each scheme are presented in Table 4.1 for
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comparison. For each test equation, we stated the absolute value of h(xk) (denoted as |h(xk)|
) when 1 ≤ k ≤ 7. The presentation a.b−α in Table 4.1 denotes a.b decimal values with
exponent α, where a, b, α ∈ ℜ.
The numerical results obtained in Table 4.1 indicates that MHIS solve all the test equations
with overwhelming precision as compared to HIS. Although, in one iteration cycle, the HIS
requires the evaluation of one function less than the number of functions evaluation required in
MHIS, the MHIS requires no function derivatives. This setback of the MHIS is compensated
by its level of accuracy and the non requirement of function derivative. For instance, in Table
4.1 it will require more than one additional iteration by HIS to achieve near accuracy of the
MHIS in all the problems solved.

Scheme h(x1) h(x2) h(x3) h(x4) h(x5) h(x6) h(x7)
Example 4.1 x0 = 3.0

HIS 6.0−1 5.9−3 9.4−09 3.8−26 2.6−078 8.1−0235 2.4−0704

MHIS 2.3−1 1.1−6 6.4−23 8.3−92 2.2−367 1.2−1469 -
Example 4.2 x0 = 2.0

HIS 1.7−1 6.9−4 5.9−11 3.9−032 1.1−095 2.5−0286 3.0−858

MHIS 3.7−2 3.3−6 2.6−31 1.4−124 1.1−497 4.0−1990 -
Example 4.3 x0 = 1.0

HIS 6.8−1 5.6−04 2.7−13 3.0−41 4.1−125 1.1−0378 2.0−1131

MHIS 4.5−2 1.6−10 2.9−44 2.8−179 2.6−719 1.8−2879 -
Example 4.4 x0 = 1.0

HIS 2.7−3 2.0−11 8.2−36 5.7−109 1.9−0328 7.1−987 -
MHIS 2.9−4 9.4−18 9.8−72 1.1−287 2.2−1151 − -

Example 4.5 x0 = 0.5
HIS 6.0−1 1.4−2 9.0−08 2.7−023 6.7−070 1.1−0209 4.4−629

MHIS 3.3−2 4.1−9 1.1−36 4.9−147 2.2−588 8.5−2354 -
Example 4.6 x0 = 3.1

HIS Diverged
MHIS 2.2−2 4.8−10 1.3−40 6.1163 3.2−652 2.4−2609 -

Table 1. Computational results comparison for HIS and MHIS.

Conclusion
The iterative scheme put forward in this manuscript is effective for solving NLE and have the
advantages of producing more accurate approximations compared to the scheme from which
it was developed and does not requires function derivative evaluation. However, the method
is not optimal as conjectured by Kung and Truab in [15]. This may be considered for further
study.
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