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Abstract. In this paper, a new modified line search Armijo is used in the diagonal dis-
crete gradient bundle method to solve large-scale non-smooth optimization problems. The
new principle causes the step in each iteration to be longer, which reduces the number of
iterations, evaluations, and the computational time. In other words, the efficiency and per-
formance of the method are improved. We prove that the diagonal discrete gradient bundle
method converges with the proposed monotone line search principle for semi-smooth func-
tions, which are not necessarily differentiable or convex. In addition, the numerical results
confirm the efficiency of the proposed correction.
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1. Introduction and Background
In this paper, we are considering the non-smooth optimization problem of the form

(1.1)
min f(x)

s.t. x ∈ Rn,

where the objective function f : Rn → R is supposed to be semi-smooth and the number of
variables n is supposed to be large. Note that no differentiability or convexity assumptions for
problem (1.1)are made. Non-smooth optimization problems are encountered in many usage
areas; for instance, they are used in economics mechanics, engineering, control theory, optimal
shape design, machine learning and data mining, for cluster analysis and classification (see
[2])these problems are applied in a large scale.

The diagonal discrete gradient bundle method [11] is a derivative-free method for the large-
scale non-smooth optimization. The diagonal discrete gradient bundle method combines
discrete gradient method [1] and the diagonal bundle method [12]. The discrete gradient
method is a derivative-free method for the small-scale non-smooth optimization, while the
diagonal bundle method is a successor of the limited memory bundle method utilizing sub-
gradient information to solve large-scale non-smooth optimization problems.

To solve optimization problems, we use the line search technique to find the step length.
Exact line search methods to calculate step length can be expensive and time consuming.
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Therefore, some inexact line search techniques [4] namely the Armijo technique, the Wolfe
technique and the Goldstein technique have been proposed to determine an acceptable step
length tk. Monotone line search method is a new approach to determine the step length in
optimization problems. This method reduces the line search range to find the largest step
length in each iteration and avoids being confined to a narrow valley as much as possible
[4, 7].

Of the problems with the diagonal discrete gradient bundle method, one is that it may not
work for some problems. Our purpose in this article is to modify the above method. In the
diagonal discrete gradient bundle method, Armijo line search method is used to calculate the
step length. In this paper, we present a monotone line search algorithm to solve non-smooth
optimization problems. In this algorithm, we combine a monotone strategy with the modified
Armijo rule and design a new algorithm that will probably choose a larger step length at each
iteration. This strategy may reduce the number of iterates, time and function evaluations
and can improve the efficiency of the new approach. Numerical results show that the new
approach to solving non-smooth optimization problems is robust and efficient.

The paper is organized as follows. In Section 2, we introduce the diagonal discrete gradient
bundle method. In Section 3, we describe a new monotone Armijo line search algorithm
and present its convergence properties. Section 4 shows numerical results of the algorithm.
Finally, Section 5 concludes the paper.

2. Diagonal discrete gradient bundle method

In this section, we introduce the diagonal discrete gradient bundle method, which uses the
ideas of the variable metric bundle method [8] to calculate the null step, simple aggregate,
and the subgradient locality measure. The diagonal discrete gradient bundle method uses
discrete gradients instead of subgradients in our calculations and the search direction dk is
calculated using the diagonal variable metric update as

dk = −Dkvk

where vk is discrete gradient and Dk is the diagonal variable metric update.
In order to specify a new step into the search direction dk, the diagonal discrete gradient

bundle method uses the so-called armijo line search (see [9, 17]) for: a new iteration point
xk+1 and a new auxiliary point yk+1 created such that

xk+1 = xk + tkLdk and yk+1 = xk + tkRdk ∀ k ≥ 1,

with y1 = x1 , where tkR ∈ (0, tmax] and tkL ∈
[
0, tkR

]
are step sizes, and tmax > 1 is the upper

bound for the step size. A necessary condition for a serious step is to have

(2.1) tkL = tkR > 0 and f (xk+1) ≤ f (xk)− εkLt
k
Rwk

where εkL ∈
(
0, 12

)
is a line search parameter and wk > 0 represents the acceptable amount

of descent of f at xk. If (2.1) is satisfied, we set xk+1 = yk+1 and a serious step is taken. On
the other hand, a null step is taken if

tkR > tkL = 0 and − βk+1 + dTk vk+1 ≥ −εkRwk,

where εkR ∈
(
εkL,

1
2

)
is a line search parameter and vk+1 ∈ V0 (yk+1, ζk) (the closed convex

set of discrete gradients V0 (yk+1, ζk) is an approximation to the subdifferential ∂f (yk+1) for
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sufficiently small ζk > 0). Moreover, βk+1 is analogous to the subgradient locality measure
[13, 14] used in standard bundle methods, that is

βk+1 = max
{∣∣∣f (xk)− f (yk+1) + (yk+1 − xk)

T vk+1

∣∣∣ , γ∥yk+1 − xk∥2
}
.

Here, γ > 0 is a distance measure parameter supplied by the user. In the case of a null step, we
set xk+1 = xk but information about the objective function is increased because we store the
auxiliary point yk+1 and the corresponding auxiliary discrete gradient vk+1 ∈ V0 (yk+1, ζk).
The diagonal discrete gradient bundle method uses the original discrete gradient vk after the
serious step and the aggregate subgradient ṽk after the null step for direction finding (i.e. we
set vk = ṽk if the previous step is a serious step). The aggregation procedure is carried out
by determining multipliers λk

i satisfying λk
i > 0 for all i = {1, 2, 3} and

∑3
i=1 λ

k
i = 1 that

minimize a simple quadratic function

φ (λ1, λ2, λ3) = [λ1vm + λ2vk+1 + λ3ṽk]
TDk [λ1vm + λ2vk+1 + λ3ṽk] + 2

(
λ2βk+1 + λ3β̃k

)
.

Here, vm ∈ V0 (xk, ζk) is the current discrete gradient, vk+1 ∈ V0 (yk+1, ζk) is the auxiliary
discrete gradient, and ṽk is the current aggregate discrete gradient from the previous iteration
(ṽ1 = v1). In addition, βk+1 is the current subgradient locality measure and β̃k is the current
aggregate subgradient locality measure (β̃1 = 0) (see [17]).

The resulting aggregate discrete gradient ṽk+1 and aggregate subgradient locality measure
β̃k+1 are computed by

ṽk+1 = λk
1vm + λk

2vk+1 + λk
3 ṽk and β̃k+1 = λk

2βk+1 + λk
3β̃k

Due to this simple aggregation procedure, only one trial point yk+1 and the corresponding
discrete gradient vk+1 ∈ V0 (yk+1, ζk) need to be stored.

We need to consider how to update the matrix Dk and, at the same time, to find the search
direction dk The basic idea in direction finding is the same as that with the limited memory
bundle method. However, due to the usage of null steps some modifications similar to the
variable metric bundle methods has to be made: If the previous step is a null step, the matrix
Dk is formed by using the limited memory SR1 update (see [12]). This update formula gives
us a possibility to preserve the boundedness and some other properties of generated matrices
that are required in the proof of global convergence.

The stopping parameter wk at iteration k is defined by

wk = −ṽTk dk + 2β̃k

and the algorithm stops if wk < ϵ for some user specified ϵ > 0. The parameter wk is also
used during the line search procedure to represent the desirable amount of descent. (See [11]
for more details on the diagonal discrete gradient bundle method)

3. Modified Armijo line search conditions
More practical strategies perform an inexact line search to identify a steplength that

achieves adequate reductions in f at minimal cost. These strategies choose the steplength
tk guaranteeing a sufficient reduction in function values while this might induce the overall
algorithm to converge. Some conditions proposed for acceptance of steplength tk, namely
the Armijo, Wolfe and Goldstein conditions [12, 4]. A practical and common criterion for
terminating linear search is the Armijo condition. This condition is to control a sufficient
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decrease in the objective function and the basic idea of the Armijo condition is to guarantee
that the chosen steplength value is not too large.

We use the condition

(3.1) f (xk+1) ≤ f (xk) + ε1t
k
Rwk + θ1h

(
tkR, dk

)
to produce a serious step, where tkR is the largest number in

{
s, ρs, ρ2s, ...

}
, with ρ ∈ (0, 1)

and

sk = −
vTk dk

dTkBkdk
.

In condition(3.1), h
(
tkR, dk

)
is obtained from the following equation:

(3.2) h (tR, d) =

 0 if tR = 0

exp
−
(

t2R∥d∥2

2

)
if tR > 0

is a function and

(3.3) 0 < ε2 ≤ ε1 <
1

2
and ε2 + ε1 <

1

2
and 0 < θ1 < 1

are auxiliary parameters.
We can see the right-hand side of the approach is greater than the right-hand side of the

standard Armijo rule, so a larger steplength is possible for the algorithm to gain. These
changes may reduce the number of iterations and function evaluations for attaining the same
optimum.

3.1. modified Armijo line search Procedure. Initial. Consider positive parameters
εA, εL, εR, εT satisfying εT + εA < εR < 1

2 and εL < εT , distance measure parameter γ > 0,
an interpolation parameter κ ∈

(
0, 12

)
and θ1 ∈ (0, 1). All of these parameters are constant.

Step i . Set tA = 0 and t = tU .
Step ii . Calculate f (xk + tdk), vk+1 ∈ V0 (xk+1, ζ) and

βk+1 = max
{∣∣∣f (xk)− f (yk+1) + (yk+1 − xk)

T vk+1

∣∣∣ , γ∥yk+1 − xk∥2
}

. If f (xk + tdk) ≤ f (xk)+

ε1t
k
Rwk + θ1h

(
tkR, dk

)
set tA = t; otherwise, set tU = t.

Step iii (serious step). If f (xk + tdk) ≤ f (xk) + ε1t
k
Rwk + θ1h

(
tkR, dk

)
set tR = tL = t

and return.
Step iv (Null step). If −βk+1 + dTk vk+1 ≥ −εkRwk, set tR = t, tL = 0 and return.
Step v. Choose t ∈ [tL + κ (tU − tL) , tU − κ (tU − tL)] by some interpolation procedure,

and go to Step ii.

Lemma 3.1. Suppose that the sequence {xk} is generated by modified Armijo line search. If
t̃ and t are steplengths which satisfy in the standard Armijo rule and modified Armijo rule,
respectively, then t̃ ≤ t and new Armijo rule is well-defined.

Proof. If t̃ and t are the steplengths which satisfy in the standard Armijo rule and the new
Armijo-type line search method, respectively, then we have

(3.4) f
(
xk + t̃kdk

)
− f (xk) ≤ ε1t̃

k
Rwk ≤ ε1t̃

k
Rwk + θ1t̃

k
Rh (tR, d).
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This implies that t̃ ≤ t. Now, by Taylor’s theorem

(3.5)

lim
t→0+

f (xk)− f (xk + tdk) + t (−ε1wk + θ1h (tR, d))

t

= lim
t→0+

f (xk)−
(
f (xk) + tvTk dk + o (t ∥dk∥)

)
+ t (−ε1wk + θ1h (tR, d))

t

= −vTk dk − ε1wk + θ1h (tR, d) > 0.

So, there exists a t̂k > 0 such that

(3.6) f (xk + tdk) ≤ f (xk) + t (−ε1wk + θ1h (tR, d)) ∀t ∈
[
0, t̂k

]
Therefore, the new Armijo line search is well-defined. □

3.2. Convergence analysis. In this section, we show the global convergence of the diagonal
discrete gradient bundle algorithm. The convergence of diagonal discrete gradient bundle
algorithm is described in [11]. In [?], it is shown that the monotone line search method is
well-defined. We will continue to show that the monotone line search procedure terminates
in a finite number of iterations. First, the monotone line search procedure has been proved
to be finite under the assumption of upper semi-smoothness when subgradients are used.

Lemma 3.2. Let f satisfy the following semi-smoothness hypothesis. For any x ∈ Rn, d ∈ Rn

and sequences
{
t̂i
}
⊂ R+ and {ĝi} ⊂ Rn satisfying t̂i ↓ 0 and ĝi ∈ ∂f

(
xk + t̂id

)
, one has

(3.7) lim
i→∞

sup ĝTi d ≥ lim
i→∞

inf
f
(
xk + t̂id

)
− f (xk)

t̂i

Then, the monotone line search procedure terminates in a finite number of iterations.

Proof. The proof becomes identical to the proof of Theorem 3.6 in [17]. □

The set of discrete gradients is an approximation to the subdifferential if the function
is semi-smooth. Since the class of semi-smooth functions includes the class of upper semi-
smooth functions, we here assume that the objective function f is semi-smooth. Now, due to
assumption of semi-smoothness and subgradient, the monotone Armijo line search procedure
is also finite when subgradients are replaced with discrete gradients.

4. Numerical experiments
As already said, the test set used in our experiments consists of extensions of classical

academic non-smooth minimization problems from the literature. That is, problems 1 − 8
were first introduced in [10]. These problems can be formulated with any number of variables.
Note that in the computation of both the Armijo line search and monotone Armijo line search,
more than n function evaluations are needed for each iteration. Here, we examine problems
with dimensions of 50, 200 and 1000 variables.We perform our experiments in MATLAB 8.1
programming environment.
We say that a solver finds the solution with respect to a tolerance ϵ > 0 if∣∣∣∣fk+1 − fk

1 + fk

∣∣∣∣ ≤ ε
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and ∣∣∣∣∥xk+1 − xk∥
1 + ∥xk∥

∣∣∣∣ ≤ ε

Where fk+1 and xk+1 are the values of the function and the optimal point in the current
iteration, fk and xk are the values of the function and the optimal point in the previous
iteration. We have accepted the results with respect to the tolerance ϵ = 10−3. For the
diagonal discrete gradient bundle method, these are

εL = 10−4 εR = 0.25 tmin = 10−12 tmax = 1000 γ = 10−4 θ1 = 0.85.

We put τk =
Fk−1

Fk
in the modified line search condition, where Fk is the sum of the first k

sentences of the Fibonacci sequence(see [6]).Also, in this paper, multipliers λk
i for i = {1, 2, 3}

are calculated by the default optimization method in MATLAB.

The results are summarized in Tables 1− 3 where we have compared the efficiency of the
conditions both in terms of the computational time and the number of function evaluations
(nf , evaluations for short). In details, these results suggest that the proposed algorithm
has promising behaviour encountering with medium-scale and large-scale unconstrained op-
timization problems and it is superior to the considered algorithm in the all cases.

Problem Armijo line search Modified Armijo line search
nf/time nf/time

1 3201/0.077 3128/0.053
2 Fail 11, 783/0.92
3 8132/0.513 7856/0.398
4 14, 189/0.302 13, 889/0.258
5 5, 400/0.268 4, 693/0.213
6 3, 345/0.09 3, 122/0.05
7 11, 471/0.18 10, 782/0.10
8 13, 356/0.11 12, 997/0.09

Table 1. Summary of the results with 50 variables

Problem Armijo line search Modified Armijo line search
nf/time nf/time

1 42, 815/1.168 41, 782/0.997
2 Fail 52, 364/2.690
3 44, 654/1.638 43, 541/1.489
4 113, 918/10.291 112, 273/5.05
5 41, 104/1.663 40, 963/1.528
6 279, 301/5.36 252, 177/4.95
7 58, 965/7.235 55, 236/6.589
8 51, 297/1.34 49, 484/1.01

Table 2. Summary of the results with 200 variables.
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Problem Armijo line search Modified Armijo line search
nf/time nf/time

1 1, 821, 133/47.864 1, 633, 963/43.873
2 Fail 832, 896/42.426
3 1, 506, 899/81.411 1, 463, 998/75.878
4 2, 932, 844/39.886 2, 634, 231/38.123
5 129, 091/47.276 124, 827/45.321
6 176, 458/55.45 175, 892/40.35
7 203, 372/61.32 201, 309/52.37
8 5, 390, 563/59.45 5, 242, 908/53.931

Table 3. Summary of the results with 1000 variables

The results are summarized in table 1 − 3 where we have compared the efficiency of the
conditions both in terms of the computational time and the number of function evaluations
(nf , evaluations for short).The phrase Fail indicates that the method in question is not
able to solve the problem.In problem 2, the old method is not able to solve the problem, but
the modified method is able to solve the problem. In details, these results suggest that the
proposed algorithm has promising behaviour encountering with medium-scale and large-scale
unconstrained optimization problems and it is superior to the considered algorithm in all
cases. Summarizing the results of tables 1, 2 and 3 implies that modified diagonal discrete
gradient bundle method is superior to the presented algorithm with respect to the number of
iterations and function evaluations.

5. Conclusion
In this paper, we present a correction for the diagonal discrete gradient bundle method.

In this modification, we focus on a new approach to a new monotone line search. This rule
produces a larger step size, especially when the repetition is far from optimal. We proved
the global convergence of this method for semi-smooth functions that are not necessarily
differentiable and convex. The numerical experiments confirm the efficiency of the proposed
correction compared to the diagonal discrete gradient bundle method to solve large-scale
non-smooth optimization problems.
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