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Abstract. A kind of approximation, called best coapproximation was introduced and dis-
cussed in normed linear spaces by C. Franchetti and M. Furi in 1972. Subsequently, this
study was taken up by several researchers in different abstract spaces.
In this paper, we define relations on best coapproximation and worst coapproximation. We
show that these relations are equivalence relation. We obtain cosets sets of best coapprox-
imation and worst approximation. We obtain some results on these sets, compactness and
weakly compactness and define coqproximinal and coqremotal.
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1. Introduction and Background
As a counter part to best approximation, a kind of approximation called best coapproxi-

mation was introduced in normed linear spaces by C. Franchettiand M. Furi [3] to study some
characteristic properties of real Hilbert spaces.
Subsequently, this theory has been developed to a large extent in normed linear spaces and in
Hilbert spaces by C. Franchetti and M. Furi, H. Mazaheri, P.L.Papini and I. Singer, Geetha
S. Rao and by many others (see e.g. [3, 5, 6, 12, 13] and references cited therein).
In a series of papers, G. Albinus, G.G. Lorentz, T.D. Narang, G. Pantelidis, K. Schnatz, A.I.
Vasilev and others (see e.g. [1,4, 7, 11, 14, 16, 19] and references cited therein) have tried
to extend various results on best approximation available in normed linear spaces to metric
linear spaces. The situation in case of best coapproximation is somewhat different.Whereas
some attempts have been made to discuss best coapproximation in metric linear spaces (see
e.g. [9, 10]) but still in these spaces this theory is less developed as compared to the theory
of best approximation. The present paperis also a step in this direction.
The paper mainly deals with some results on the existence and uniqueness of best coapproxi-
mation in quotient spaces when theunderlying spaces are metric linear spaces. We also show
how coproximinalityis transmitted to and from quotient spaces. The results proved in the
paper extend and generalize various known results on the subject.
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Let (X, ∥.∥) be a normed linear space, W a non-empty subset of X. A point y0 ∈ W is
said to be a best coapproximation point for x ∈ X, if

∥y − y0∥ ≤ ∥x− y∥,
Suppose g ∈ W , we set coset best coapproximation

Rg = {x ∈ X : ∥y − g∥ ≤ ∥x− y∥ for y ∈ W )},
Let (X, ∥.∥) be a normed linear space, W a non-empty subset of X, x ∈ X and 0 ∈ W . We

set
RW (x) = {g0 ∈ W : ||y − g0|| ≤ ∥x− y∥ for all y ∈ W}.

The set W is coproximinal if for all x ∈ X, RW (x) is non-empty. The set W is cochebyshev
if for all x ∈ X, RW (x) is singelton.

Let X be a normed linear space and W a non-empty subset of X. A point q(x) ∈ W is
said to be a cofarthest point for x ∈ X if

∥y − q(x)∥ ≥ ∥x− y∥,
we set

Gg = {x ∈ X : ∥y − g∥ ≥ ∥x− y∥ for all y ∈ W},
Let (X, ∥.∥) be a normed linear space, W a non-empty subset of X, x ∈ X and 0 ∈ W . We

have
GW (x) = {g0 ∈ W : ||y − g0|| ≥ ∥x− y∥ for all y ∈ W}.

The set W is coremotal if for all x ∈ X, GW (x) is non-empty. The set W is uniquely
coremotal if for all x ∈ X, GW (x) is singelton.

Definition 1.1. Let X be a normed linear space, W a subset of X.
i) W is called qcoproximinal if for every x ∈ X, the set (x − W ) ∩ R0 is a non-empty

compact subset of X.
ii) W is called qcoremotal if for every x ∈ X, the set (x−W )∩G0 is a non-empty compact

subset of X.

2. Equivalance relations on coapproximate sets

In this section we define two equivalance relations on coapproiximte sets. We obtains some
results on these relations.

Definition 2.1. Let (X, ∥.∥) be a normed space, W a coproximinal subset in X and x, y ∈ X.
We define two relations on X, with
(i)

x ▷1 y ⇔ ∀w ∈ W : ∥x− w∥ = ∥y − w∥.
(ii)

x ▷2 y ⇔ for some g ∈ W : g ∈ RW (x) ∩RW (y).

We denoted the equivalence class of x ∈ X under ralation ▷1(▷2) by [x]1([x]2)

Theorem 2.2. Let (X, ∥.∥) be a normed space, W a proximinal subset in X. The relations
▷1 is equivalance relation.

Proof. These relation is reflexive and symmetric. We show that trnsitivity relation ▷1. For
all elements a, b, c ∈ X, if a ▷1 b and b ▷1 c, then ∀w ∈ W : ∥a − w∥ = ∥b − w∥ = ∥c − w∥.
It follows that a ▷1 c. □
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Theorem 2.3. Let (X, ∥.∥) be a normed space, W a proximinal subset in X. The relations
▷2 is equivalance relation.

Proof. These relation is reflexive and symmetric. We show that trnsitivity relation ▷1. For
all elements a, b, c ∈ X, if a ▷2 b and b ▷2 c, then RW (a) = RW (b) = RW (c). It follows that
a ▷2 c. □
Theorem 2.4. Let (X, ∥.∥) be a normed space, W a cproximinal subset in X. Then for every
x ∈ X, there exists a g ∈ W such that [x]1 ⊆ Rg.

Proof. Suppose x ∈ X, since W is coproximinal, there exists a g ∈ RW (x). Now
y ∈ [x]1 ⇐⇒ x ▷1 y

⇐⇒ ∀w ∈ W : ∥x− w∥ = ∥y − w∥.
Also ∀w ∈ W : ∥w − g∥ ≤ ∥w − x∥. Therefore

[x]1 ⊆ Rg.

□
Theorem 2.5. Let (X, ∥.∥) be a normed space, W a coproximinal subset in X. Then for
every x ∈ X, there exists a g ∈ W such that [x]2 ⊆ Rg.

Proof. Suppose x ∈ X,Since W is coproximinal, there exists g ∈ W such that g ∈ RW (x).
Now

y ∈ [x]2 ⇒ x ▷2 y

⇒ RW (x) = RW (y)

⇒ g ∈ RW (y)

⇒ y ∈ Rg.

□
Example 2.6. Suppose X = R2 with the norm ∥(x, y)∥ =

√
x2 + y2 and W = {(x, 0) : x ∈

R}. W is coproximinal, becasue if (x, y) ∈ R2, we set g0 = (0, y). It is clear that g0 ∈
RW ((x, y)). Also

{(a, 1) : a ∈ R} ⊆ [(0, 1)]1

Theorem 2.7. Let (X, ||.||) be a normed linear space and W a cochebyshev subspace of
X, x, y ∈ X and g0 ∈ W . If g0 = RW (x) and y ∈ [g0, x), then g0 = RW (y). (where
[g0, x) = {λg0 + (1− λ)x : λ ≥ 0}.)

Proof. Since g0 = RW (x) and y ∈ [g0, x), for some λ > 0, y = λg0 + (1 − λ)x and for all
w ∈ W , we have ∥g0 − w∥ ≤ ∥x− w∥.For all w ∈ W

∥y − w∥ = = ∥λg0 + (1− λ)x− λw − (1− λ)w∥
= ∥(1− λ)(x− w)∥+ λ∥g0 − w∥
≥ (1− λ)∥w − g0∥+ λ∥g0 − w∥
≥ ∥w − g0∥

Therefore g0 = RW (y). . □
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Definition 2.8. ([14],[17]) For any two elements x and y in normed linear space X, x is said
to be orthogonal to y in the sense of Birkhorff-James, written as x⊥y, if ∥x+ λy∥ ≥ ∥x∥ for
every real scaler λ.

Let W is closed subspace of a normed space X. From [2],
g0 ∈ RW (x) ⇐⇒ W⊥x− g0.

Let W is closed subspace of a normed space X. We set
⊥W = {x ∈ X : W⊥x}.

Theorem 2.9. Let (X, ∥.∥) be a normed linear space and W a coproximinal subspace of X,
⊥W a convex set and x, y ∈ X. If x ▷2 y, then x− y ∈⊥W .
Proof. Suppose x ▷2 y, then there exists a g0 ∈ RW (x) ∩ RW (y). Then x − g0, y − g0 ∈⊥W ,
therefore x− y = 2x−g0+y−g0

2 ∈⊥W . □
Theorem 2.10. Let (X, ∥.∥) be a normed linear space. If W is a subset of X. Then

i) for every g ∈ W , Rg and Gg are closed set;
ii) thel set W is cochebyshev if and only if for every g1, g2 ∈ W and g1 ̸= g2, we have

Rg1 ∩Rg2 = ∅;
iii) the set W is uniquely coremotal if and only if for every g1, g2 ∈ W and g1 ̸= g2, we

have Gg1 ∩Gg2 = ∅;
iv) if W is cochebyshev, Rg ∩R−g ̸= ∅ then g = 0;
v) if W is uniquely coremotal Gg ∩G−g ̸= ∅ then g = 0.

Proof. (i) Suppose g ∈ W and {xn} ⊂ Rg and xn → x as n → ∞. Then ∀w ∈ W , ∥w − g∥ ≥
∥xn − w∥. Therefore ∀w ∈ W , ∥w − g∥ ≥ ∥x − w∥, it folows that x ∈ Rg. Simillary Gg is
closed.

(ii) suppose W is cochebyshev, g1, g2 ∈ W , g1 ̸= g2 and x ∈ Rg1∩Rg2 . Then g1, g2 ∈ RW (x)
and g1 = g2, that is a contraction.
On converse, if g1, g2 ∈ W and g1 ̸= g2 and Rg1 ∩ Rg2 = ∅. Suppose for some x ∈ X, there
exists h1, h2 ∈ RW (x) and h1 ̸= h2. Then x ∈ Rh1 ∩ Rh2 . That is a contraction, it follows
that W is cochebyshev.

iii) The prove is simillar to (ii).
iv) There exists a x ∈ X such that x ∈ Rϵ

g ∩ R−g. Therefore g,−g ∈ RW (x) and g = −g.
It follows that for all g = 0.

v) There exists a x ∈ X such that x ∈ Gg ∩ G−g. Therefore g,−g ∈ GW (x) and g = −g.
It follows that for all g = 0. □

3. Equivalance relations on worst coapproximate

In this section we define two equivalance relations on worst coapproiximte. We obtains
some results on these relations.
Definition 3.1. Let (X, ∥.∥) be a normed space, W a coremotal subset in X and x, y ∈ X.
We define two relations on X, with
(i)

x ◁1 y ⇔ ∀w ∈ W : ∥x− w∥ = ∥y − w∥.
(ii)

x ◁2 y ⇔ for some g ∈ W : g ∈ GW (x) ∩GW (y).

We denoted the equivalence class of x ∈ X under ralation ◁1(◁2) by 1[x](2[x])
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Theorem 3.2. Let (X, ∥.∥) be a normed space, W a proximinal subset in X. The relations
◁1 is equivalance relation.

Proof. These relation is reflexive and symmetric. We show that trnsitivity relation ◁1. For
all elements a, b, c ∈ X, if a ◁1 b and b ◁1 c, then ∀w ∈ W : ∥a − w∥ = ∥b − w∥ = ∥c − w∥.
It follows that a ◁1 c. □

Theorem 3.3. Let (X, ∥.∥) be a normed space, W a proximinal subset in X. The relations
◁2 is equivalance relation.

Proof. These relation is reflexive and symmetric. We show that trnsitivity relation ◁1. For
all elements a, b, c ∈ X, if a ◁2 b and b ◁2 c, then RW (a) = RW (b) = RW (c). It follows that
a ◁2 c. □

Theorem 3.4. Let (X, ∥.∥) be a normed space, W a cproximinal subset in X. Then for every
x ∈ X, there exists a g ∈ W such that [x]1 ⊆ Pg.

Proof. Suppose x ∈ X, since W is coproximinal, there exists a g ∈ RW (x). Now

y ∈ [x]1 ⇐⇒ x ▷1 y

⇐⇒ ∀w ∈ W : ∥x− w∥ = ∥y − w∥.

Also ∀w ∈ W : ∥w − g∥ ≤ ∥w − x∥. Therefore

[x]1 ⊆ Rg.

□

Theorem 3.5. Let (X, ∥.∥) be a normed space, W a coproximinal subset in X. Then for
every x ∈ X, there exists a g ∈ W such that 2[x] ⊆ Rg.

Proof. Suppose x ∈ X,Since W is coproximinal, there exists g ∈ W such that g ∈ RW (x).
Now

y ∈2 [x] ⇒ x ◁2 y

⇒ RW (x) = RW (y)

⇒ g ∈ RW (y)

⇒ y ∈ Rg.

□

Example 3.6. Suppose X = R2 with the norm ∥(x, y)∥ =
√
x2 + y2 and W = {(x, 0) : x ∈

R}. W is coproximinal, becasue if (x, y) ∈ R2, we set g0 = (0, y). It is clear that g0 ∈
RW ((x, y)). Also

{(a, 1) : a ∈ R} ⊆ [(0, 1)]1

Theorem 3.7. Let (X, ||.||) be a normed linear space and W a cochebyshev subspace of
X, x, y ∈ X and g0 ∈ W . If g0 = RW (x) and y ∈ [g0, x), then g0 = RW (y). (where
[g0, x) = {λg0 + (1− λ)x : λ ≥ 0}.)
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Proof. Since g0 = RW (x) and y ∈ [g0, x), for some λ > 0, y = λg0 + (1 − λ)x and for all
w ∈ W , we have ∥g0 − w∥ ≤ ∥x− w∥.For all w ∈ W

∥y − w∥ = = ∥λg0 + (1− λ)x− λw − (1− λ)w∥
= ∥(1− λ)(x− w)∥+ λ∥g0 − w∥
≥ (1− λ)∥w − g0∥+ λ∥g0 − w∥
≥ ∥w − g0∥

Therefore g0 = RW (y). . □

4. Qcoproximinal and Qcoremotal

In this section we are bring some propeties of qcoproximinal and qcoemotal.

Theorem 4.1. Let X be a Banach space, W a coproximinal subset of X and for every
g ∈ W , W − g = W . If for all g ∈ W , R0 is compact. Then RW (x) is compact and W is
qcoproximinal.

Proof. Suppose g ∈ W and Rg is compact. Since W−g = W we have Rg = −g+R0, becasuse

x ∈ Rg ⇐⇒ ∥g − w∥ ≤ ∥w − x∥ ∀w ∈ W

⇐⇒ ∥w − g∥∥ ≤ ∥w − g + x+ g

iff ∥w∥ ≤ ∥x+ g − w∥
⇐⇒ x+ g ∈ R0

⇐⇒ x ∈ −g +R0

Since Rg is compact, then R0 is compact and for all x ∈ X, (x−W )∩R0 is compact. Therefore
W is quasi proximinal. If {gn}n≥1 is a sequence in PW (x), then for all n ≥ 1, x ∈ Pgn . Then
{x− gn}n≥1 is a sequence in P0. Since P0 is compact, there exists a convergence subsequence
{x − gnk

}k≥1 in P ϵ
0 , therefore there exists a convergence subsequence {gnk

}k≥1 in RW (x) .
Therefore RW (x) is compact. □

Theorem 4.2. Let X be a Banach space, W a coremotal subset of X and for every g ∈ W ,
W − g = W . If for every g ∈ W , Fg is compact. Then W is qcoremotal.

Proof. Suppose g ∈ W and Fg is compact. Since g−W = W we have Gg = −g+G0, becasuse

x ∈ Gg ⇐⇒ ∥g − w∥ ≥ ∥w − x∥ ∀w ∈ W

⇐⇒ ∥w − g∥∥ ≥ ∥w − g + x+ g

iff ∥w∥ ≥ ∥x+ g − w∥
⇐⇒ x+ g ∈ G0

⇐⇒ x ∈ −g +G0

Since Gg is compact, then G0 is compact and for all x ∈ X, (x − W ) ∩ G0 is compact.
Therefore W is qcoremotal. if {gn}n≥1 is a sequence in GW (x), then for all n ≥ 1, x ∈ Ggn .
Then {x − gn}n≥1 is a sequence in G0. Since G0 is compact, there exists a convergence
subsequence {x − gnk

}k≥1 in G0, therefore there exists a convergence subsequence {gnk
}k≥1

in GW (x) . Therefore GW (x) is compact. □
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Theorem 4.3. Let X be a Banach space, W a coproximinall subset of X and for every x ∈ X
the set RW (x) is compact, Then W is qcoproximinal.

Proof. for every x ∈ X the set RW (x) is compact, x ∈ X and {xn} ⊂ (x −W ) ∩ R0. Then
{xn − x} ⊂ W and for all w ∈ W , we have ∥w∥ ≤ ∥xn − w∥. We set gn = xn − x, we have

∥gn∥ ≤ ∥xn − gn∥.

Since RW (x) is compact. There exists a subsequence {gnk
} such that for l0 ∈ W ,

gnk
→ l0 k → ∞.

It follows that
xnk

→ x+ l0 k → ∞.

□

Theorem 4.4. Let X be a Banach space, W a coremotall subset of X and for every x ∈ X
the set GW (x) is compact, Then W is qcoremotal.

Proof. or every x ∈ X the set GW (x) is compact, x ∈ X and {xn} ⊂ (x − W ) ∩ G0. Then
{xn − x} ⊂ W and for all w ∈ W , we have ∥w∥ ≤ ∥xn − w∥. We set gn = xn − x, we have

∥gn∥ ≤ ∥xn − gn∥.

Since GW (x) is compact. There exists a subsequence {gnk
} such that for l0 ∈ W ,

gnk
→ l0 k → ∞.

It follows that
xnk

→ x+ l0 k → ∞.

□

Theorem 4.5. Let X be a Banach space and W a coproximinal hyperplane subspace of X.
Then the following statements are equivalent:

i) W is qcoproximinal,
ii) for every g ∈ W and for every sequence {xn}n≥1 with xn ∈ Rg has a convergent

subsequence.

Proof. i) → ii). Since codimen(W ) = 1, there exists a y0 ∈ X such that X = y0 +W . Also
(y0 −W ) ∩R0 is nonempty and compact.
For g ∈ W , if the sequence {xn}n≥1 ⊆ Rg. Then here exists a sequence {gn} in W such that
xn − g = y0 + gn. It is clear {y0 + gn} is a sequence in (y0 −W ) ∩ R0. Therefore {xn − g}
and {xn} has a convergent subsequence.

ii) → i). If for every g ∈ W and sequence {xn}n≥1 and xn ∈ Rg has a convergent
subsequence. Therefore Rg is compact, from Theorem 2.4„ W is qcoproximinal. □

Theorem 4.6. Let X be a Banach space and W a coremotal hyperplane subset of X. Then
the following statements are equivalent:

i) W is qcoremotal,
ii) for every g ∈ W and for every sequence {xn}n≥1 with xn ∈ Gg has a convergent

subsequence.
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Proof. i) → ii). Since codimen(W ) = 1, there exists a y0 ∈ X such that X = y0 +W . Also
(y0 −W ) ∩G0 is nonempty and compact.
For g ∈ W , if the sequence {xn}n≥1 ⊆ Gg. Then here exists a sequence {gn} in W such that
xn − g = y0 + gn. It is clear {y0 + gn} is a sequence in (y0 −W ) ∩ G0. Therefore {xn − g}
and {xn} has a convergent subsequence.

ii) → i). If for every g ∈ W and sequence {xn}n≥1 and xn ∈ Gg has a convergent
subsequence. □
Theorem 4.7. Let X be a Banach space and W a coproximinal subspace of X. Then the
following statements are equivalent:

i) W is qcoproximinal.
ii) for every g ∈ W , for every subspace of X of form Wx = W + span{x} and for every

sequence {xn}n≥1 ⊂ Wx with xn ∈ PWx
g has a convergent subsequence.

Proof. i) → ii) If W is qcoroximinal in X. Then W , is qcoproximinal in every Wx (x ∈ X\W ),
Since codim(W ) = 1 in every Wx. From Theorem 2.6, for every sequence {xn}n≥1 ⊂ Wx with
xn ∈ PWx

n has a convergent subsequence.
ii) → i) Assume that we have (ii), codim(W ) = 1 in every Wx. Also W is coproximinal in
Wx and X = ∪x∈X\WWx. It follows that W is qcoproximinal in X. □
Theorem 4.8. Let X be a Banach space, W a coproximinal subspace of X, x ∈ X, g ∈ W .
Then the following statements are equivalent:

i) x ∈ Rg,
ii) for w ∈ W , ∥w − g0∥ ≤ ∥x− w∥W⊥,

where
∥x− g0∥W⊥ = sup{|f(x− g0)| : ∥f∥ ≤ 1, f ∈ W⊥}.

Proof. . i) → ii) Suppose x ∈ Rg, from Lemma 1.1, for all w ∈ W , there exists a fw ∈ X∗

such that ∥fw∥ = 1, fw(x) = fw(g) and fw(g) ≥ ∥g∥. Therefore |f(x − g0)| ≥ f(x − g0) ≥
∥x− g0∥ − ϵ and ∥x− g0

W⊥ ≥ ∥x− g0∥ − ϵ.
ii) → i) Suppose f ∈ W⊥, ∥f∥ ≤ 1 and h ∈ W , then |f(x− g0)| = |f(x− h) ≤

f∥∥x− h∥ ≤ ∥x− h∥. Therefore
∥x− g0∥W⊥ ≤ ∥x− h∥.

We have ∥x− g0∥ ≤ ∥x− g0∥W⊥ ≤ ∥x− h∥+ ϵ, x ∈ Pg. □
Theorem 4.9. Let X be a Banach space, W a coproximinal subspace of X, x ∈ X, g ∈ W ,
E ⊆ X. Then the following statements are equivalent:

i) for g ∈ W , E ⊆ Rg,
ii) for x ∈ E, ∥x− g0∥ ≤ ∥x− g0∥W⊥.

Proof. i) → ii) Suppose g ∈ W , if x ∈ E, then x ∈ Pg. From Theorem 2.2, ∥x − g0∥ ≤
∥x− g0∥W⊥ .

ii) → i) Suppose x ∈ E then ∥x − g0∥ ≤ ∥x − g0∥W⊥ , from Theorem 2.2, x ∈ Pg0 .. Then
from Lemma 1.1, there exits a f ∈ X∗ such that ∥f∥ = 1, f |W = 0 and f(x−g0) ≥ ∥x−g−0∥.
It follows that for g ∈ W

f(x− g) = f(x) = f(x− g0) ≥ ∥x− g0∥W⊥ .

From Lemma 1.1, x ∈ Rg. □
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