Mathematical Analysis \& Convex Optimization

## Research Paper

# ON SUBSPACE BALANCED CONVEX-CYCLIC OPERATORS 

GH. BASERI, A. I. KASHKOOLY*, AND H. REZAEI


#### Abstract

Let $X$ be a separable Banach space and $M$ be a subspace of $X$. A bounded Linear operator $T$ on $X$ is subspace balanced convex-cyclic for a subspace $M$, if there exists a vector $x \in X$ such that the intersection of balanced convex hull of orb $(T, x)$ with $M$ is dense in $M$. We give an example of subspace balanced convex-cyclic operator that is not balanced convex-cyclic. Also we give an improvement of the Kitai-like criterion for subspace balanced convex-cyclicity and bring on with the Hahn-Banach characterization for subspace balanced convex-cyclicity.


MSC(2010): 46A22, 47A16
Keywords: Balanced convex-cyclic operators, Kitai criterion, Hahn Banach theorem.

## 1. Introduction

Dynamics of linear operators are mainly with the behaviour of them. The study of subspace hypercyclic operators was started by Mador and Martinez in [6].
Convex-cyclic operators was introduced by Rezaei in [7].The study of subspace convex-cyclic operators was started in [1].Baseri, Kashkooly and Rezaei start balanced convex-cyclic operators in [3].
A bounded linear operator $T$ on Banach space $X$ is balanced convex-cyclic (see [3]) if there exists a vector $x \in X$ such that the balanced convex hull of orb $(T, x)$ is dense in $X$. The vector $x$ is said to be balanced convex-cyclic vector for $T$.
In [3] it is mentioned that between a set and its linear span there is a balanced convex hull, from this we get that every hypercyclic operator is balanced convex-cyclic and every balanced convex-cyclic operator is cyclic. In this paper we introduce and study the subspace balanced convex-cyclic operators.

## 2. Basic definitions and theorems

Let $H$ be a real or complex separable Hilbert space.let $M$ be a subspace of $H$ that is closed and $B(H)$ be the algebra of all linear continuous operators on $H$.

Definition 2.1. The set of all balanced convex polynomials is define as $\mathcal{B C P}=\{P(z)=$ $\left.\sum_{j=0}^{n} a_{j} z^{j}: \sum_{j=0}^{n}\left|a_{j}\right| \leq 1\right\}$.

[^0]Definition 2.2. Let $T \in B(H)$ and let $M$ be a non-zero subspace of $H . T$ is said to be subspace balanced convex-cyclic operator, if there exists $x \in H$ such that $B C-\operatorname{orb}(T, x) \cap M$ is dense in $M$, where;

$$
\begin{aligned}
& B C-\operatorname{orb}(T, x)=\{P(T) x: P \text { is balanced convex polynomial }\} \\
= & \left\{P(T) x: P(T)=a_{0}+a_{1} T+a_{2} T^{2} \ldots+a_{n} T^{n}, n \in N, \sum_{j=0}^{n}\left|a_{j}\right| \leq 1\right\}
\end{aligned}
$$

Such a vector $x$ is said to be a subspace balanced convex-cyclic vector. we will use $M$-balanced convex-cyclic instead of subspace balanced convex-cyclic. we define $B C(T, M):=\{x \in H: B C-\operatorname{orb}(T, x) \cap M$ is dense in $M\}$ as the set of all subspace balanced convex-cyclic vectors for $M$.

Proposition 2.3. Let $T: X \longrightarrow X$ and $S: Y \longrightarrow Y$ be bounded operators, If $\mathrm{S} \oplus \mathrm{T}$ is hypercyclic then so are S and T .

Proof. See [5]
Proposition 2.4. Let $X$ be a Banach space and $T \in B(X)$ be a balanced convex-cyclic operator, then

1. $\|T\|>1$.
2. $\sup \left\{\left\|T^{n}\right\|: n \geq 1\right\}=+\infty$.
3. $\sup \left\{\left\|T^{*^{n}} \Lambda\right\|: n \in \mathrm{~N}\right\}=+\infty$, for every $\Lambda \neq 0$ in $X^{*}$.
4. every component of $\sigma(T)$ must intersect the set $\mathbb{C} \backslash \mathbb{D}$.
5. If $X$ is an infinite-dimensional complex Banach space, then $T$ is not compact.

Proof. See [3]
Example 2.5. Let $T$ be a balanced convex-cyclic operator on $\mathcal{H}$ and $I$ be the identity operator on $\mathcal{H}$. Then $T \oplus I: \mathcal{H} \oplus \mathcal{H} \longrightarrow \mathcal{H} \oplus \mathcal{H}$ is subspace balanced convex-cyclic operator for subspace $M=\mathcal{H} \oplus\{0\}$ with subspace balanced convex-cyclic vector $x \oplus 0$, moreover $T \oplus I$ is not balanced convex-cyclic operator.

Proof. Since $T$ is balanced convex-cyclic operator on $\mathcal{H}$, so there exists $x \in \mathcal{H}$ such that $B C-\operatorname{orb}(T, x)$ is dense in $\mathcal{H}$. let $M=\mathcal{H} \oplus\{0\} \subseteq \mathcal{H}$ and $m=x \oplus 0$ thus,
$B C-\operatorname{orb}(T \oplus I, m)=\{P(T \oplus I) m: P$ is a balanced convex polynomial $\}=\{P(T) x \oplus 0: P$ is a balanced convex polynomial $\} \subseteq \mathcal{H} \oplus\{0\}=M$.
Since $B C-\operatorname{orb}(T, x)$ is dense in $\mathcal{H}$, so $B C-\operatorname{orb}(T \oplus I, m) \cap M$ is dense in $M$.Therefore $T \oplus I$ is a subspace balanced convex-cyclic operator.
Assume that $T \oplus I$ is a subspace balanced convex-cyclic on $\mathcal{H} \oplus \mathcal{H}$, then by proposition 2.3, the identity operator must be balanced convex-cyclic on $\{0\}$, which is impossible.
Because $\|I\|=1$ and by proposition 2.4 we get a contradiction.
We will define subspace balanced convex-transitive operators and we will show that they will be subspace balanced convex-cyclic operators.
We will use the idea from $[4,5,6]$ changing them for balanced convex polynomial spans and generalizing them.

Definition 2.6. Let $T \in B(\mathcal{H})$ and $M$ be a non-zero subspace of $\mathcal{H} \cdot T$ is said to be $M$-balanced convex-transitive with respect to $M$ if for all non-empty sets $U, V \subseteq M$ both
are relatively open, there exists a balanced convex-polynomial $P$ such that $P(T)(U) \cap V \neq \emptyset$ or $U \cap P(T)^{-1}(V) \neq \emptyset$ contains a relatively open non-empty subset of $M$.

Proposition 2.7. Let $T \in B(\mathcal{H})$ and $M$ ba a non-zero subspace of $\mathcal{H}$.
Then $B C(T, M)=\bigcap_{j=1}^{\infty} \bigcup_{P \in \mathcal{B C P}} P(T)^{-1}\left(V_{j}\right)$ where $\mathcal{B C P}$ is the collection of all balanced convex polynomials and $\left\{\mathrm{V}_{\mathrm{j}}\right\}$ countable open basis for relative topology of $M$ as a subspace of $\mathcal{H}$.
Proof. If $x \in \bigcap_{j=1}^{\infty} \bigcup_{P \in \mathcal{B C P}} P(T)^{-1}\left(V_{j}\right)$ then for all $\mathrm{j}=1,2, \ldots$ there exists a balanced convex polynomial $P$ such that $x \in P(T)^{-1}\left(V_{j}\right)$ if and only if $P(T) x \in V_{j}$.
But since $\left\{V_{j}\right\}$ is a basis for the relatively topology of $M$, this occurs if and only if $B C-$ $\operatorname{orb}(T, M) \cap M$ is dense in $M$, that is $x \in B C(T, M)$.

Lemma 2.8. Let $T \in B(\mathcal{H})$ and $M$ be a non-zero subspace of $\mathcal{H}$.Then the following are equivalent:
(1) $T$ is $M$-balanced convex-transitive with respect to $M$.
(2) For each relatively open subsets $U$ and $V$ of $M$, there exists $P \in \mathcal{B C P}$ such that $P(T)^{-1}(\mathrm{U}) \cap V$ is relatively open subset in $M$.
(3) For each relatively open subsets $U$ and $V$ of $M$, there exists $P \in \mathcal{B C P}$ such that $P(T)^{-1}(\mathrm{U}) \cap V \neq \emptyset$ and $P(T)(M) \subseteq M$.

Proof. (3) $\Longrightarrow(2)$ Since $P(T): M \longrightarrow M$ is continuous and $V$ is relatively open in $M$, then $P(T)^{-1}(\mathrm{U})$ is also relatively open in $M$. Now, if $V$ be any open subset of $M$, then $P(T)^{-1}(\mathrm{U}) \cap V$ is open and $P(T)^{-1}(\mathrm{U}) \cap V \subseteq M$.
$(2) \Longrightarrow(1)$ Since for each relatively open subsets $U$ and $V, P(T)^{-1}(\mathrm{U}) \cap V$ is relatively open subset in $M$, so $P(T)^{-1}(\mathrm{U}) \cap V \neq \varnothing$ and $P(T)^{-1}(\mathrm{U}) \cap V$ is open in $M$.
$(1) \Longrightarrow(3)$ By definition of $M$-balanced convex-transitive, there exists $U$ and $V$ relatively open subsets in $M$, such that $W=P(T)^{-1}(U) \cap V \neq \varnothing$ and $W$ is relatively open in $M$, and $W \subseteq P(T)^{-1}(U)$. So $P(T)(W) \subseteq U$ and $U \subseteq M$, therefore we have $P(T)(W) \subseteq M$.
We must show that $P(T)(M) \subseteq M$.
Let $x \in M$ and $x_{0} \in W$, since $W$ is relatively open in $M$, so there exists $r>0$ such that $x_{0}+r x \in W$.
Since $P(T)(W) \subseteq M$, so $P(T)\left(x_{0}+r x\right)=P(T)\left(x_{0}\right)+r P(T) x \in M$.
Thus $P(T)\left(x_{0}\right) \in M$ and since $M$ is subspace so $r^{-1}\left(-P(T)\left(x_{0}\right)+P(T)\left(x_{0}\right)+r P(T) x\right) \in M$, that is $P(T)(x) \in M$.This is true for any $x \in M$, hence for $P(T)(x) \in M$, so $P(T)(M) \subseteq M$.

Theorem 2.9. Let $T \in B(H)$ and $M$ be a non-zero subspace of $\mathcal{H}$.If $T$ is $M$-balanced convex-transitive,then $T$ is $M$-balanced convex-cyclic.

Proof. By proposition 2.7 and lemma 2.8 proof is clear.

## 3. Subspace balanced convex-Cyclic Criterion

In this section similar to [3] we give easily applicable Kitai-like criterion for an operator to be subspace balanced convex-cyclic. Also we will relate it with invariant subspaces and we will see that the converse of theorem 2.9 in general is not true.
Proposition 3.1. Let $T \in B(\mathcal{H})$ and let $M$ be a non-zero subspace of $\mathcal{H}$.If there exist $X$ and $Y$, dense subsets of $M$ such that for every $x \in X$ and $y \in Y$ there exists a sequence $\left\{P_{k}\right\}_{k=1}^{\infty}$ of balanced convex polynomials such that;
(1) $P_{k}(T) y \longrightarrow 0 ; \quad \forall y \in Y$.
(2) For each $x \in X$, there exists a sequence $\left\{y_{k}\right\} \subseteq \mathrm{M}$, such that $y_{k} \rightarrow 0$ and $P_{k}(T) y_{k} \rightarrow x$.
(3) $M$ is an invariant subspace for $P_{k}(T)$ for all $k \geqslant 1$.

Then $T$ is $M$-balanced convex-cyclic operator.
Proof. We will use lemma 2.8 and theorem 2.9.
Let $U$ and $V$ be non-empty relatively open subsets of $M$. We will show that there exists $k \geqslant 1$ such that $P_{k}(T)(U) \cap V \neq \emptyset$. Since $X, Y$ are dense in $M$, there exists $v \in Y \cap V$ and $u \in X \cap U$. Since $U$ and $V$ are relatively open, there exists $\varepsilon>0$ such that the $M$-ball centered at $v$ of radius $\varepsilon$ is contained in $V$ and the $M$-ball centered at $u$ of radius $\varepsilon$ is contained in $U$.
By hypothesis, for $u \in X$ and $v \in Y$, we can choose $k$ large enough such that there exists $y_{k} \in$ $M$ with $\left\|P_{k}(T) v\right\|<\frac{\varepsilon}{2} \quad, \quad\left\|y_{k}\right\|<\varepsilon \quad$ and $\quad\left\|P_{k}(T) y_{k}-u\right\|<\frac{\varepsilon}{2}$. So we have;
a) Since $v \in M$ and $y_{k} \in M$, so $v+y_{k} \in M$. Also since $\left\|\left(v+y_{k}\right)-v\right\|=\left\|y_{k}\right\|<\varepsilon$ it follows that $v+y_{k}$ is in $M$-ball centered at $v$ of radius $\varepsilon$ and hence $v+y_{k} \in V$.
b) Since $v$ and $y_{k}$ are in $M$ and $M$ is invariant under $P_{k}(T)$,it follows that $P_{k}(T)\left(v+y_{k}\right) \in M$. Also $\left\|P_{k}(T)\left(v+y_{k}\right)-u\right\| \leqslant\left\|P_{k}(T)(v)\right\|+\left\|P_{k}(T)\left(y_{k}\right)-u\right\|<\varepsilon$.

Hence $P_{k}(T)\left(v+y_{k}\right)$ is in the $M$-ball centered at $u$ of radius $\varepsilon$ and thus $P_{k}(T)\left(v+y_{k}\right) \in U$. So by (a) and (b), T is $M$-balanced convex-transitive and by theorem 2.9 we get that $v+y_{k} \in$ $P_{k}(T)^{-1}(U) \cap V$, thus $P_{k}(T)^{-1}(U) \cap V \neq \varnothing$ which means that $T$ is $M$-balanced convex-cyclic operator.

## 4. Hahn-Banach characterization

A necessary and sufficient condition for an operator so as to have a balanced convex-cyclic vector was established in [3].
Now in this section we give a similar necessary and sufficient condition for subspace balanced convex-cyclic operators.Also we prove some properties about subspace balanced convex-cyclic operators.

Theorem 4.1. (Hahn-Banach characterization for subspace balanced convex-cyclicity)
Let $X$ be a separable infinite dimensional Banach space and $M$ be a non-trivial closed subspace of $X$ and $T \in B(X)$. Then for a vector $x \in X$ the following conditions are equivalent:
(1) The vector $x$ is an $M$-balanced convex-cyclic vector for $T$.
(2) For every non-zero functional $f \in M^{*}$ we have $\sup \{|f(P(T) x)|: P$ is balanced convex polynomial and $P(T) x \in M\}=+\infty$.
Proof. Let $S=B C-\operatorname{orb}(T, x) \cap M$. So $S$ is a balanced convex set and the proof is similar to proposition 2.2 in [3] and so we omit it.

Theorem 4.2. Let $X$ be a separable infinite dimensional Banach space.
If $T$ is $M$-balanced convex-cyclic operator, then;
(1) $\|T\|>1$.
(2) $\sup \left\{\left\|T^{*^{n}} f\right\|: \mathrm{n} \in \mathrm{N}\right\}=+\infty$ for each non-zero $f \in M^{*}$.

Proof. (1) If $\|T\| \leqslant 1$, then for each $x \in X, B C-\operatorname{orb}(T, x) \cap M$ is norm bounded and can not dense in $M$.So $T$ is not $M$-balanced convex-cyclic which is a contradiction.
(2) By way of contradiction, suppose there exists a non-zero linear functional $f \in M^{*}$ such that $\left\|T^{*^{n}} f\right\| \leqslant b$ for some positive number $b$ and all $n \geqslant 1$. Let $x \in X$ so $\left|f\left(T^{n} x\right)\right|=\left|\left(T^{*^{n}} f\right) x\right| \leqslant\left\|T^{*^{n}} f\right\|\|x\| \leqslant b\|x\|$. Hence for every balanced convex polynomial $P$, we have $|f(p(T)) x| \leqslant b\|x\|$.So $B C-\operatorname{orb}(T, x) \cap M$ can not dense in $M$ and $T$ is not $M$-balanced convex-cyclic which is a contradiction.

Proposition 4.3. If $T \in B(X)$ is an $M$-balanced convex-cyclic operator,then $\sigma_{p}\left(T^{*}\right) \cap \overline{\mathbb{D}}=\varnothing$.
Proof. Let $x$ be a subspace balanced convex-cyclic vector for $T$ and $\lambda$ be an eigenvalue for $T^{*}$.So there exists a non-zero bounded linear functional $f$ on $X$ such that $T^{*} \circ f=\lambda f$. Hence $f\left(T^{n} x\right)=T^{*^{n}}(f(x))=\lambda^{n} f(x)$.So for every balanced convex polynomial $P$ we have $f(P(T) x)=P(\lambda) f(x)$ and consequently $\sup _{\mathrm{P} \in \mathcal{B C P}}|f(P(T) x)|=\sup _{\mathrm{P} \in \mathcal{B C P}}|P(\lambda)|\|f\|=+\infty \quad$ if and only if $|\lambda|>1$. This completes the proof.

As a result of theorem 4.1 we have the next corollary.
Corollary 4.4. If $T \in B(X)$ is an $M$-balanced convex-cyclic operator,then $T$ has dense range.

The next theorem similar to theorem 2.6 in [2] shows that if an operator $T \in B(X)$ be balanced convex-cyclic, then there exists a special subspace $M$ of $X$ such that $T$ is an $M$-balanced convex-cyclic operator.

Theorem 4.5. Let $x \in X$ be a balanced convex-cyclic vector for an operator $T \in B(X)$,then $x$ is an $M$-balanced convex-cyclic vector for a non-trivial closed subspace $M$ of $X$.

## References

[1] D. Ahmed, M. Hama, J. Wozniak and K. Jwamer, On subspace convex-cyclic operators, Xiv : 1905.04781 [math.DS].
[2] M. Asadipour, Some notes on subspace convex-cyclicity, Journal of Mathematical Extension, Vol.16,no.5,(2022)(6) 1-9.
[3] Gh. Baseri, A. I. Kashkooli and H. Rezaei, On the balanced convex hull of operator's orbit, Iran J Sci Technol Trans Sci, 46 (2022) 659-665.
[4] F. Bayart, E. Matheron, Dynamics of linear operators. Cambridge University press, New york, (2009).
[5] K. G. Grosse-Erdmann, A. Peris, Linear chaos universitext, Springer, (2011).
[6] B. F. Madore, R. A. Martinez-Avendano, Subspace hypercyclicity, J. Math. Anal. Appl. Vol 373, no. 2, PP. 502-511. (2011).
[7] H. Rezaei, On the convex hull generated by orbit of operators, Linear Algebra and its Applications, 438 (2013), 4190-4203.
(Gholamreza Baseri) Department of Mathematics, College of Sciences, Yasouj University, Yasouj-75914-74831, Iran.

Email address: g.baseri@stu.yu.ac.ir
(Ali Iloon Kashkooly) Department of Mathematics, College of Sciences, Yasouj University, Yasouj-75914-74831, Iran.

Email address: Kashkooly@yu.ac.ir
(Hamid Rezaei) Department of Mathematics, College of Sciences, Yasouj University, Yasouj-75914-74831, Iran.

Email address: rezaei@yu.ac.ir


[^0]:    Date: Received: January 11, 2022, Accepted: June 2, 2022.

    * Corresponding author.

