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Abstract. In this paper, we deal with the existence and multiplicity solutions, for the
following fractional discrete boundary-value problem{

T+1∇α
k (k∇α

0 (u(k))) + k∇α
0 (T+1∇α

k (u(k))) = λf(k, u(k)), k ∈ [1, T ]N0 ,

u(0) = u(T + 1) = 0,

where 0 ≤ α ≤ 1 and 0∇α
k is the left nabla discrete fractional difference and k∇α

T+1 is the
right nabla discrete fractional difference and f : [1, T ]N0 × R → R is a continuous function
and λ > 0 is a parameter. The technical approach is based on the critical point theory and
some local minimum theorems for differentiable functionals. Several examples are included
to illustrate the main results.
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1. Introduction and Background

The first concepts of fractional nabla differences traces back to the works of Gray and
Zhang[8]. Discrete fractional calculus with the nabla operator studied in [11]. Initial value
problems in discrete fractional calculus considered in [10]. In [12] authors studied two-point
boundary value problems for finite fractional difference equations. This kind of problems play
a fundamental role in different fields of research, for example in biological, Atici and Şengül
introduced and solved Gompertz fractional difference equation for tumor growth models [13].

We refer the reader to the recent monograph on the introduction to fractional nabla cal-
culus [26]. Another well-known monograph is [39] that is devoted to the systematic and
comprehensive exposition of classical and modern results in the theory of fractional integrals
and derivatives and their applications. Also [41] is a new monograph that works for differ-
ential and integral equations and systems and for many theoretical and applied problems in
mathematics, mathematical physics, probability and statistics, applied computer science and
numerical methods.

It is well known that variational methods is an important tool to deal with the problems
for differential and difference equations with boundary value conditions.

Variational methods for dealing with fractional difference equations with boundary value
conditions have appeared in [7, 9]. More, recently, in [4, 5, 25, 27, 31, 33, 34, 38] by starting

Date: Received: May 23, 2022, Accepted: December 7, 2022.
∗Corresponding author.

35



36 M. KHALEGHI MOGHADAM

from the seminal papers [14, 15], the existence and multiplicity of solutions for nonlinear
discrete boundary value problems have been investigated by adopting variational methods.

There seems to be increasing interest in the existence of solutions to boundary value prob-
lems for finite difference equations with fractional difference operator during the last three
decades.

The other important tool in the study of nonlinear difference equations is fixed point meth-
ods; see, for instance, [23, 28, 29] and references therein. Morse theory is also other tool in
the study of nonlinear fractional differential equations [36].
In recent paper [30], for the first time, the authors showed that critical point theory is an effec-
tive approach to study the existence of weak solutions of fractional boundary value problems
(FBVPs) of the form

(1.1)
{

tD
α
T (0D

α
t (u(k))) = λf(k, u(k)), a.e. t ∈ [0, T ],

u(0) = u(T ) = 0,

We note that due to the difficulty of creating a framework of suitable function spaces and
variable functions for FBVPs, it is often not easy to apply critical point theory to study
FBVPs. Recently, in [40, 32] authors have used the variational method to investigate the
existence of weak solution of fractional equations.

The aim of this paper is to establish the existence of one non-trivial solution and two
non-trivial solutions and three solutions, separately, for the following discrete boundary-value
problem

(1.2)
{

k∇α
T+1 (0∇α

k (u(k))) + 0∇α
k

(
k∇α

T+1(u(k))
)
= λf(k, u(k)), k ∈ [1, T ]N0 ,

u(0) = u(T + 1) = 0,

where 0 ≤ α ≤ 1 and 0∇α
k is the nabla discrete fractional difference and k∇α

T+1 is the nabla
discrete fractional difference and ∇u(k) = u(k)−u(k−1) is the backward difference operator
f : [1, T ]N0 × R → R is a continuous function such that

f(k, x) ≥ 0, ∀x ≤ 0, k ∈ [1, T ],

λ > 0 is a parameter and T ≥ 2 is fixed positive integer and N1 = {1, 2, 3, · · · } and TN =
{· · · T − 2, T − 1, T} and [1, T ]N0 is the discrete set {1, 2, · · · , T − 1, T} = N1

∩
TN. By a

non-trivial solution of (1.2), we mean a function

u ∈ {w : [0, T + 1]N0 → R : w(0) = w(T + 1) = 0, w = (w(1), w(2), ..., w(T ))†},

that satisfies the equation in (1.2) on [1, T ]N0 .
In [25] the Riemann-Liouville fractional integrals of order β were applied to investigate the
existence of at least three solutions of the fractional boundary value problem in the continu-
ous case.
The rest of this paper is arranged as follows. In the following we point out a special case of
one of the our main results that proves later. In section 2, we provide our main tools and
some definitions and integration by parts for fractional difference theorem and in Section 3,
we establish variational framework and provide the matric form of (1.2) and auxiliary inequal-
ities and fundamental functional and lemmas. In Section 4 and Section 5, we investigate the
existence and multiple solutions, respectively that contains several theorems and examples
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and diagrams to illustrate the results.

In this paper, based on a local minimum theorem (Theorem 2.1) due to Bonanno, Candito
and D’Aguì[17], we ensure an exact interval of the parameter λ, in which the problem (1.2)
admits at least a non-trivial solution.

As an example, here, we point out the following special case of one of the our main results.

Theorem 1.1. Let fixed α ∈ (0, 1) and f : R → R be a continuous function. Then for any

λ ∈
]
0,

λmin

2T
sup
c>0

c2

max|ξ|≤c

∫ ξ
0 f(s)ds

[
,

the problem{
k∇α

T+1 (0∇α
k (u(k))) + 0∇α

k

(
k∇α

T+1(u(k))
)
= λf(u(k)), k ∈ [1, T ]N0 ,

u(0) = u(T + 1) = 0,

(1) has at least one non-trivial solution.
(2) has at least two solutions provided that lim infξ→∞

f(ξ)
ξ = ∞.

2. Preliminaries

In this paper, our main tools are the following local minimum theorems.
(H) Let Φ, Ψ : X → R be two continuously Gâteaux differentiable functional with Φ coercive
and

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Clearly, if Φ(x) = 0, then x = 0.

Theorem 2.1. (Bonanno, Candito and D’Aguì [17, Theorem 3.3]) Assume that (H) holds
and let r > 0.
Then, for each λ ∈ Λ :=]0, r

supΦ−1([0,r]) Ψ
[, the function Iλ = Φ − λΨ admits at least a local

minimum u ∈ X such that Φ(u) < r, Iλ(u) ≤ Iλ(u) for all u ∈ Φ−1([0, r]) and I ′λ(u) = 0.

Another local minimum theorem ensures the existence of a non-zero local minimum in the
following.

Theorem 2.2. (Bonanno, Candito and D’Aguì [17, Theorem 3.4 ]) Assume that (H) holds.
In addition, suppose that there exist r ∈ R and w ∈ X, with 0 < Φ(w) < r, such that

supΦ−1([0,r])Ψ

r
<

Ψ(w)

Φ(w)
.

Then, for each λ ∈ Λw :=]Φ(w)
Ψ(w) ,

r
supΦ−1([0,r]) Ψ

[, the function Iλ = Φ − λΨ admits at least a
local minimum u ∈ X such that u ̸= 0, Φ(u) < r, Iλ(u) ≤ Iλ(u) for all u ∈ Φ−1([0, r]) and
I ′λ(u) = 0.

The third main tool is the following two critical points theorem.

Theorem 2.3. (Bonanno [16, Theorem 3.2]) Let X be a real finite dimensional Banach space
and let Φ,Ψ : X −→ R be two continuously Gâteaux differentiable functionals such that Φ is
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bounded from below and Φ(0) = Ψ(0) = 0. Fix r > 0 such that supΦ−1(]−∞,r[) Ψ

r < +∞ and,
assume that for each

λ ∈ Λ :=

]
0,

r

supΦ−1(]−∞,r[)Ψ

[
,

the functional Iλ = Φ− λΨ satisfies the (PS)-condition and it is unbounded from below.
Then, for each λ ∈ Λ, the function Iλ admits at least two distinct critical points.
It is worth noticing that in the previous result, Theorem 2.3, one of the two critical points

may be zero. But in the next result, Theorem 2.4, both of the two critical points can not be
zero.
Theorem 2.4. (Bonanno and D’Aguì [19, Theorem 2.1]) Let X be a real finite dimensional
Banach space and let Φ,Ψ : X −→ R be two continuously Gâteaux differentiable functionals
such that infX Φ = Φ(0) = Ψ(0) = 0. Assume that there are r ∈ R and ũ ∈ X, with
0 < Φ(ũ) < r, such that

(2.1)
supΦ−1(]−∞,r])Ψ

r
<

Ψ(ũ)

Φ(ũ)

and, for each

λ ∈ Λũ :=

]
Φ(ũ)

Ψ(ũ)
,

r

supΦ−1(]−∞,r])Ψ

[
,

the functional Iλ = Φ− λΨ satisfies the (PS)-condition and it is unbounded from below.
Then, for each λ ∈ Λũ, the function Iλ admits at least two non-zero critical points uλ,1,

uλ,2 such that I(uλ,1) < 0 < I(uλ,2).
The forth main tool is the following three critical points theorem.

Theorem 2.5. (Bonanno, Candito and D’Aguì [17, Theorem 4.1]) Assume that (H) holds
and there exist r ∈ R and w ∈ X, with 0 < r < Φ(w), such that
(a1)

supΦ−1([0,r]) Ψ

r < Ψ(w)
Φ(w) ,

(a2) for each λ ∈ Λ :=

]
Φ(w)

Ψ(w)
,

r

supΦ−1([0,r])Ψ

[
, the function Iλ = Φ− λΨ is coercive.

Then, for each λ ∈ Λ, the function Iλ admits at least three distinct critical points.
Remark 2.6. Theorems 2.5 is the finite dimensional versions of [21, Theorem 3.6].

We refer to the paper [18] in which Theorem 2.1 and Theorem 2.2 have been successfully
employed to the existence of positive results for a nonlinear parameter-depending algebraic
system. We make reference to the paper [20] in which Theorem 2.1 has been successfully
employed to the existence of at least one non-trivial solution for two-point boundary value
problems. Also we refer to the paper [37] in which Theorems 2.3 and 2.4 has been successfully
employed to the existence of at least two positive solutions to Kirchhoff-type fourth-order
impulsive elastic beam equations. Also we speak of- the paper [22] in which Theorem 2.4 has
been successfully employed to the existence of at least two positive solutions for a nonlinear
parameter-depending algebraic system. We refer to the paper [35] in which Theorem 2.5 has
been successfully employed to the existence of at least three solutions for a discrete anisotropic
boundary value problem.
The following definitions will be helpful to our discuss.
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Definition 2.7. [2] (i) Let m be a natural number, then the m rising factorial of t is written
as

(2.2) tm =

m−1∏
k=0

(t+ k), t0 = 1.

(ii) For any real number, the α rising function is increasing on N0 and

(2.3) tα =
Γ(t+ α)

Γ(t)
, such that t ∈ R\{· · · ,−2,−1, 0}, 0α = 0.

Definition 2.8. let f be defined on Na−1
∩

b+1N, a < b, α ∈ (0, 1), then the nabla discrete
new (left Gerasimov-Caputo) fractional difference is defined by(

C
k ∇α

a−1f
)
(k) =

1

Γ(1− α)

k∑
s=a

∇sf(s)(k − ρ(s))−α, k ∈ Na(2.4)

and the right Gerasimov-Caputo one by(
C
b+1∇α

kf
)
(k) =

1

Γ(1− α)

b∑
s=k

(−∆sf)(s)(s− ρ(k))−α, k ∈ bN,(2.5)

and in the left Riemann-Liouville sense by(
R
k ∇α

a−1f
)
(k) =

1

Γ(1− α)
∇k

k∑
s=a

f(s)(k − ρ(s))−α, k ∈ Na,(2.6)

=
1

Γ(−α)

k∑
s=a

f(s)(k − ρ(s))−α−1, k ∈ Na,(2.7)

and the right Riemann-Liouville one by(
R
b+1∇α

kf
)
(k) =

1

Γ(1− α)
(−∆k)

b∑
s=k

f(s)(s− ρ(k))−α, k ∈ bN,(2.8)

=
1

Γ(−α)

b∑
s=k

f(s)(s− ρ(k))−α−1, k ∈ bN,(2.9)

where ρ(k) = k − 1 be the backward jump operator.

For example, Let f(k) = 1 be defined on Na−1
∩

b+1N, therefore from (2.4) and (2.5), we
have [1]

(2.10) C
b+1∇α

k1 =C
k ∇α

a−11 = 0, k ∈ Na

∩
bN.

The relation between the nabla left and right Gerasimov-Caputo and Riemann-Liouville frac-
tional differences are as follow:

(2.11)
(
C
k ∇α

a−1f
)
(k) =

(
R
k ∇α

a−1f
)
(k)− (k − a+ 1)−α

Γ(1− α)
f(a− 1),

(2.12)
(
C
b+1∇α

kf
)
(k) =

(
R
b+1∇α

kf
)
(k)− (b+ 1− k)−α

Γ(1− α)
f(b+ 1).
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Thus by (2.10), (2.11) and (2.12), we have for any k ∈ Na
∩

bN,

(2.13) R
b+1∇α

k1 =
(b+ 1− k)−α

Γ(1− α)
, R

k ∇α
a−11 =

(k − a+ 1)−α

Γ(1− α)
.

Regarding the domains of the fractional type differences we observe:

(i) The nabla left fractional difference a−1∇α
k maps functions defined on a−1N to functions

defined on aN.

(ii) The nabla right fractional difference k∇α
b+1 maps functions defined on b+1N to functions

defined on bN.

As in [6] one can show that, for α → 0, one has a∇α
k (f(k)) → f(t) and for α → 1, one has

a∇α
k (f(k)) → ∇f(t)

we note that the nabla Riemann-Liouville and Gerasimov-Caputo fractional differences, for
0 < α < 1, coincide when f vanishes at the end points that is f(a − 1) = 0 = f(b + 1) [1].
Indeed, when 0 < α < 1, those conclude from (2.11) and (2.12). So, for convenience, from
now on we will use the symbol ∇α instead of R∇α or C∇α.
Now we present summation by parts formula in new discrete fractional calculus.

Theorem 2.9. ( [3, Theorem 4.4] Integration by parts for fractional difference) For functions
f and g defined on Na

∩
bN, a ≡ b (mod 1), and 0 < α < 1, one has

(2.14)
b∑

k=a

f(k)
(
k∇α

a−1g
)
(k) =

b∑
k=a

g(k)
(
b+1∇α

kf
)
(k).

Similarly,

(2.15)
b∑

k=a

f(k)
(
b+1∇α

kg
)
(k) =

b∑
k=a

g(k)
(
k∇α

a−1f
)
(k).

3. Preliminary results

Now, we establish variational framework. Define the finite T−dimensional Hilbert space
W := {u : [0, T + 1]N0 → R : u(0) = u(T + 1) = 0, u = (u(1), u(2), ..., u(T ))†},

which u† denotes the transpose of u and W is equipped with the usual inner product and the
norm

⟨u, v⟩ =
T∑

k=1

u(k)v(k), ∥u∥2 :=

(
T∑

k=1

|u(k)|2
) 1

2

.

It is known that the following norm

∥u∥ =

{
T∑

k=1

| (k∇α
0u) (k)|2 + |

(
T+1∇α

ku
)
(k)|2

} 1
2

is an equivalent norm in W .
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Next, observe by Definition 2.8 that, for k ∈ [1, T ]N0

(k∇α
0u) (k) = ∇k

1

Γ(1− α)

k∑
s=1

u(s)(k − ρ(s))−α,

(T+1∇α
ku) (k) = (−∆k)

1

Γ(1− α)

T∑
s=k

u(s)(s− ρ(k))−α

we let

z(k) =
1

Γ(1− α)

k∑
s=1

u(s)(k − ρ(s))−α, w(k) =
1

Γ(1− α)

T∑
s=k

u(s)(s− ρ(k))−α

z̃(k) = (∇kz) (k) = z(k)− z(k− 1), w̃(k) = (−∆kw) (k) = w(k)−w(k+ 1),

thus from (3.8), one can conclude that

∥u∥2 =

T∑
k=1

| (k∇α
0u) (k)|2 + |

(
T+1∇α

ku
)
(k)|2

=
T∑

k=1

| (∇kz) (k)|2 + | (−∆kz) (k)|2

=
T∑

k=1

|z̃(k)|2 + |w̃(k)|2

= ∥z̃∥22 + ∥w̃∥22,(3.1)

z := (z(1), z(2), ..., z(T ))†, w := (w(1), w(2), ..., w(T ))†

z̃ := (z̃(1), z̃(2), ..., z̃(T ))†, w̃ := (w̃(1), w̃(2), ..., w̃(T ))†

then
z(0) = 0,
z(1) = u(1),
z(2) = 1

Γ(1−α)

∑2
s=1 u(s)(2− ρ(s))−α = (1− α)u(1) + u(2),

z(3) = 1
Γ(1−α)

∑3
s=1 u(s)(3− ρ(s))−α = 1

2!(2− α)(1− α)u(1) + (1− α)u(2) + u(3),
...

z(T ) = 1
Γ(1−α)

∑T
s=1 u(s)(T−ρ(s))−α = 1

(T−1)!(T−α−1)(T−α−2) · · · (1−α)u(1)+ 1
(T−2)!(T−

α− 2)(T − α− 3) · · · (1− α)u(2) + · · ·+ (1− α)u(T − 1) + u(T ),

and

w(1) = 1
Γ(1−α)

∑T
s=1 u(s)(s)

−α = u(1)+ (1−α)u(2)+ 1
2!(2−α)(1−α)u(3) · · ·+ 1

(T−1)!(T −
α− 1)(T − α− 2) · · · (1− α)u(T ),

w(2) = 1
Γ(1−α)

∑T
s=2 u(s)(s− 1)−α = u(2) + (1− α)u(3) + 1

2!(2− α)(1− α)u(4) + 1
(T−2)!(T −

α− 2)(T − α− 3) · · · (1− α)u(T ),
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w(3) = 1
Γ(1−α)

∑T
s=3 u(s)(s− 2)−α = u(3) + (1− α)u(4) + 1

2!(2− α)(1− α)u(5) + 1
(T−2)!(T −

α− 2)(T − α− 3) · · · (1− α)u(T ),
...

w(T − 1) = 1
Γ(1−α)

∑T
s=T−1 u(s)(s− T + 2)−α = u(T − 1) + (1− α)u(T ),

w(T ) = u(T ),
hence, z = Bu, z̃ = Dz and w = B†u, w̃ = D†w where † denotes the transpose and

B =


1 0 0 · · · 0

(1− α) 1 0 · · · 0
1
2!(2− α)(1− α) (1− α) 1 · · · 0

...
...

...
...

...
(T−α−1)(T−α−2)···(1−α)

(T−1)!
(T−α−2)(T−α−3)···(1−α)

(T−2)! · · · · · · 1


T×T

,

D =


1 0 0 · · · 0 0
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

...
...

...
0 0 · · · · · · −1 1


T×T

.

It is clear that BD = DB and B†D† = D†B†, let
A = (DB)†DB, Ã = DB(DB)†.

Hence, for all u ∈ W

(3.2) u†Au = u†(DB)†DBu = u†B†D†DBu = z†D†Dz = z̃†z̃ = ∥z̃∥22,

(3.3) u†Ãu = u†DB(DB)†u = u†BDD†B†u = w†DD†w = w̃†w̃ = ∥w̃∥22,

Let A = A+ Ã, thus
u†Au = u†Au+ u†Ãu = ∥z̃∥22 + ∥w̃∥22,

therefore from (3.1) and (3.2) and (3.3), we have
(3.4) ∥u∥2 = u†Au,
Let λmin and λmax denote respectively the minimum and the maximum eigenvalues of A, for
any u ∈ W , we have
(3.5) λmin∥u∥22 < u†Au < λmax∥u∥22,
and then from (3.4),

(3.6)
√
λmin∥u∥2 < ∥u∥ <

√
λmax∥u∥2.

Therefor from (3.6), ∥u∥ → +∞ if and only if ∥u∥2 → +∞.
thus the following statements hold

1) The matrix A is real symmetric matrixes.
2) The quadratic form of the matrix A is positive.
3) The matrixes A is positive definite matrixes.
4) All the eigenvalues of A is positive.
5) The eigenvalues of the matrix A are as the same as the matrix Ã.
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6) The eigenvectors of A and Ã are not the same.

Taking the definition A into account

(3.7)
(
T+1∇α

k (k∇α
0 ) + k∇α

0

(
T+1∇α

k

))

u(1)
u(2)
u(3)

...
u(T )

 = A


u(1)
u(2)
u(3)

...
u(T )

 .

Let Φ : W → R be the functional

(3.8) Φ(u) :=
1

2

T∑
k=1

| (k∇α
0u) (k)|2 + |

(
T+1∇α

ku
)
(k)|2 = 1

2
u†Au.

An easy computation ensures that Φ turns out to be of class C1 on W and Gateaux differen-
tiable with

Φ′(u)(v) =

T∑
k=1

(k∇α
0 (u(k))) (k∇α

0 v(k)) +
(
T+1∇α

k (u(k))
) (

T+1∇α
kv(k)

)
= u†Av,

for all u, v ∈ W . To study the problem (1.2), for every λ > 0, we consider the functional
Iλ : W → R defined by

Iλ(u) := Φ(u)− λΨ(u), Ψ :=
T∑

k=1

F (k, u).(3.9)

where F (k, u) =
∫ u
0 f(k, t)dt.

Lemma 3.1. The function u be a critical point of Iλ in W , iff u be a solution of the problem
(1.2).

Proof. First, let u be a critical point of Iλ in W . Then by previous argument for all v ∈ W ,
I ′λ(u)(v) = 0 and u(0) = u(T+1) = v(0) = v(T+1) = 0. We applying the summation by parts
formulas (2.14) and (2.15) in Theorem 2.9. Thus, by selecting f(k) =

(
a−1∇α

k (u(k))
)

and
g(k) = v(k) defined on N1

∩
TN in (2.14) and selecting f(k) =

(
k∇α

T+1(u(k))
)

and g(k) = v(k)
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defined on N1
∩

TN in (2.15), one can conclude that

0 = I ′λ(u)(v)

=

T∑
k=1

(0∇α
k (u(k))) (0∇α

kv(k)) +
(
k∇α

T+1(u(k))
) (

k∇α
T+1v(k)

)
− λ

b∑
k=a

[f(k, u(k))] v(k)

=
T∑

k=1

v(k)
(
k∇α

T+1 (0∇α
k (u(k)))

)
+

T∑
k=1

v(k)
(
0∇α

k

(
k∇α

T+1(u(k))
))

− λ
T∑

k=1

[f(k, u(k))] v(k)

=

T∑
k=1

v(k)
{(

k∇α
T+1 (0∇α

k (u(k)))
)
+
(
0∇α

k

(
k∇α

T+1(u(k))
))}

− λ
T∑

k=1

[f(k, u(k))] v(k).

Bearing in mind v ∈ W is arbitrary, one can conclude that(
k∇α

T+1 (0∇α
k (u(k)))

)
+
(
0∇α

k

(
k∇α

T+1(u(k))
))

− λf(k, u(k)) = 0,

for every k ∈ [1, T ]N0 . Therefore, u is a solution of (1.2). Since u be arbitrary, we conclude
that every critical point of the functional Iλ in W , is a solution of the problem (1.2). On the
other hand, if u be a solution of (1.2), arguing backward, the proof is completed. □

Now we provide some lemmas used throughout the paper, which hold on the space W . In
the sequel, we will use the following inequality

Lemma 3.2. For every 0 < α < 1 and u ∈ W , we have

∥u∥∞ := max
k∈[1,T ]

|u(k)| ≤ ∥u∥2,(3.10)

Proof. Let k ∈ {1, 2, · · · , T − 1, T} be arbitrary. It is clear that

|u(k)|2 ≤ ∥u∥22.

Thus |u(k)| ≤ ∥u∥ for any k ∈ {1, 2, · · · , T − 1, T}. So, the inequality (3.10) conclude. □

Lemma 3.3. the functional Φ is coercive, i.e. Φ(u) → +∞ as ∥u∥ → +∞.

Proof. From (3.1) and (3.2) and (3.3), we have

(3.11) Φ(u) =
1

2
∥u∥2.

Hence Φ(u) → +∞ as ∥u∥ → +∞. □
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4. Existence of a solution

Based on a local minimum theorem (Theorem 2.1), we ensure an exact interval of the
parameter λ, in which the problem (1.2) admits at least a non-trivial solution.
Now, we present our main results. The first result gives the existence of one solution for each
λ close to zero. Here we point out an immediate consequence of Theorem 2.1 as follows.

Theorem 4.1. Let fixed α ∈ (0, 1) and c as a fixed positive constant. Then for any

λ ∈
]
0,

(
λmin
2

)
c2∑T

k=1max|ξ|≤c F (k, u(k))

[
,

the problem (1.2) has at least one non-trivial solution u0 ∈ W such that ∥u0∥∞ < c.

Proof. Our aim is to apply Theorem 2.1 to our problem. Thus, take X = W , and put Φ, Ψ
and Iλ as in (3.8) and (3.9). Clearly, infX Φ = Φ(0) = Ψ(0) = 0 and by Lemma 3.3, one
can conclude that (H) holds. By the similar arguing in [17], put r =

(
λmin
2

)
c2, and for all

u ∈ W such that 0 ≤ Φ(u) ≤ r, taking (3.2) into account, one has maxk∈[1,T ] |u(k)| ≤ ∥u∥2 ≤√
2Φ(u)
λmin

≤ c. Hence, for all u ∈ W such that 0 ≤ Φ(u) ≤ r, one has maxk∈[1,T ] |u(k)| ≤ c.
Therefore,

supu∈Φ−1[0,r]Ψ(u)

r
=

supu∈Φ−1[0,r]

∑T
k=1 F (k, u(k))

r

≤
∑T

k=1max|ξ|≤c F (k, ξ)(
λmin
2

)
c2

.(4.1)

Therefore, owing to Theorem 2.1, for each

λ ∈
]
0,

(
λmin
2

)
c2∑T

k=1max|ξ|≤c F (k, ξ)

[
⊂ Λ,

the functional Iλ admits one critical point u ∈ W such that ∥u∥∞ < c. Hence, the proof is
complete. □

We now present an example to illustrate the result of Theorem 4.1.

Example 4.2. The problem{
k∇0.5

4

(
0∇0.5

k (u(k))
)
+ 0∇0.5

k

(
k∇0.5

4 (u(k))
)
= 3

4λu(k)
2(ln k+1

k ), k ∈ [1, 3],

u(0) = u(4) = 0,

for every λ ∈]0, 0.91
5 ln 4 [ has at least one solution u such that ∥u∥∞ < 10. Indeed, T = 3 and

α = 0.5, so λmin = λ1 ≃ 0.91 < λ2 ≃ 2.515 < 3.605 ≃ λmax where

B =

 1 0 0
0.5 1 0
3
8

1
2 1

 , D =

 1 0 0
−1 1 0
0 −1 1

, A =

2.265625 −0.9375 −0.25
−0.9375 2.5 −0.9375
−0.25 −0.9375 2.265625

,
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and by taking c = 10, then, (
λmin
2

)
c2∑T

k=1max|ξ|≤c F (k, ξ)
=

0.91

5 ln 4
.

Theorem 4.3. Let fixed α ∈ (0, 1) and T ≥ 2 and f : [1, T ]×R → R be a continuous function.
Then for any

λ ∈

]
0,

λmin

2
sup
c>0

c2∑T
k=1max|ξ|≤c F (k, u(k))

[
,

the problem (1.2) has at least one solution.

Proof. Fix λ as in the conclusion and c such that λ < λmin
2

c2∑T
k=1 max|ξ|≤c F (k,u(k))

. Arguing as

in the proof of Theorem 4.1 and putting r =
(
λmin
2

)
c2, we obtain

supu∈Φ−1[0,r]Ψ(u)

r
≤
∑T

k=1max|ξ|≤c F (k, ξ)(
λmin
2

)
c2

< +∞.

Therefore, owing to Theorem 4.1, for each

λ ∈
]
0,

(
λmin
2

)
c2∑T

k=1max|ξ|≤c F (k, ξ)

[
,

the conclusion is achieved. □

Corollary 4.4. The proof of Theorem 1.1(1) is a conclusion that follows from Theorem 4.3

The second result ensures the existence of one non-trivial solution such that λ can not close
to zero. Here we point out an immediate consequence of Theorem 2.2 as follows.

Theorem 4.5. Let fixed α ∈ (0, 1) and assume that there exist two positive constants c, d,
with

(4.2) d2

(Γ(1− α))2

T∑
k=1

(
(k)−α

)2
<

(
λmin

2

)
c2,

such that

(4.3)
∑T

k=1max|ξ|≤c F (k, ξ)(
λmin
2

)
c2

<

∑T
k=1 F (k, d)

d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2 .
Then for any

λ ∈
] d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2
∑T

k=1 F (k, d)
,

(
λmin
2

)
c2∑T

k=1max|ξ|≤c F (k, u(k))

[
,

the problem (1.2) has at least one non-trivial solution u ∈ W such that ∥u∥∞ < c.
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Proof. Our aim it to apply Theorem 2.2 to our problem. By the similar arguing in [17] and
arguing as in the proof of Theorem 4.1 and putting r =

(
λmin
2

)
c2, we obtain (4.2). Let

(4.4) w(k) =

{
d k ∈ [1, T ]N0 ,

0 k = 0, T + 1.

Clearly w ∈ W . Since w vanishes at the end points that is w(0) = 0 = w(T + 1), thus its
nabla Riemann-Liouville and Gerasimov-Caputo fractional differences coincide, hence for any
k ∈ N1

∩
TN(

T+1∇α
kw
)
(k) =

(
R
T+1∇α

kw
)
(k) =

(
C
T+1∇α

kw
)
(k) =

d(T + 1− k)−α

Γ(1− α)
,

(k∇α
0w) (k) =

(
R
k ∇α

0w
)
(k) =

(
C
k ∇α

0w
)
(k) =

d(k)−α

Γ(1− α)
.

So, we have

Φ(w) =
1

2

T∑
k=1

| (k∇α
0w) (k)|2 + |

(
T+1∇α

kw
)
(k)|2

=
1

2

T∑
k=1

| d(k)−α

Γ(1− α)
|2 + |d(T + 1− k)−α

Γ(1− α)
|2

=
d2

2 (Γ(1− α))2

T∑
k=1

|(k)−α|2 + |(T + 1− k)−α|2

=
d2

(Γ(1− α))2

T∑
k=1

|(k)−α|2

=
d2

(Γ(1− α))2

T∑
k=1

(
(k)−α

)2
> 0.

Therefore

(4.5) Ψ(w)

Φ(w)
=

∑T
k=1 F (k,w(k))

d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2 =

∑T
k=1 F (k, d)

d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2 .
Hence, from (4.2), (4.1) and (4.5) and assumption (4.4) one has 0 < Φ(w) < r and

supu∈Φ−1[0,r]Ψ(u)

r
<

Ψ(w)

Φ(w)
.

Therefore, owing to Theorem 2.2, for each

λ ∈
] d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2
∑T

k=1 F (k, d)
,

(
λmin
2

)
c2∑T

k=1max|ξ|≤c F (k, u(k))

[
⊂ Λw,

the desired result concludes and the proof is complete. □

We now present an example to illustrate the result of Theorem 4.5.
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Example 4.6. The problem{
5∇0.75

k

(
k∇0.75

0 (u(k))
)
+ k∇

0.75
0

(
5∇0.75

k (u(k))
)
= 8λu3(k)sinh(u4(k))

cosh(u4(k))3
(ln k+1

k ), k ∈ [1, 4],

u(0) = u(5) = 0,

for every λ ∈]1.18, 15.84[ has at least one non-trivial solution u such that ∥u∥∞ < 10. Indeed,
T = 4 and α = 0.75, and

B =


1 0 0 0
1
4 1 0 0
5
32

1
4 1 0

15
128

5
32

1
4 1

 ,

D =


1 0 0 0
−1 1 0 0
0 −1 1 0
0 0 −1 1

, A =


42153/16384 −5841/4096 −81/512 −5/64
−5841/4096 3209/1024 −87/64 −81/512
−81/512 −87/64 3209/1024 −5841/4096
−5/64 −81/512 −5841/4096 42153/16384

,

λmax = λ1 = 117049/32768 + 15/32768
√
11719633 ≃ 5.1392,

λ2 = 117049/32768− 15/32768
√
11719633 ≃ 2.0050,

λ3 = 69945/32768 + 1/32768
√
2834119345 ≃ 3.7593

λmin = λ4 = 69945/32768− 1/32768
√
2834119345 ≃ 0.5099,

and by taking c = 10, d = 1 then,

d2

(Γ(0.25))2

4∑
k=1

(
(k)−0.75

)2
= 1.100646972,

(
λmin

2

)
c2 =

(
69945/32768− 1/32768

√
2834119345

2

)
c2 = 25.497,

thus the condition (4.2) holds. Put f(k, x) = g(x)(ln k+1
k ) = 8 x3sinh(x4)

(cosh(x4))3
(ln k+1

k ), (see the
graph of g(x) in the Figure 1), then F (k, x) =

(
1− 1/(cosh(x4))2

)
(ln k+1

k ), so

Figure 1. The graph of the function g
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4∑
k=1

max
|ξ|≤c

F (k, ξ) =
(
1− 1/(cosh(10))2

)
(

4∑
k=1

ln
k + 1

k
)

=
(
1− 1/(cosh(10))2

)
(ln 5) = 1.6094

4∑
k=1

F (k, d) =
(
1− 1/(cosh(1))2

)
(ln 5) = 0.93352

0.063 ≃
∑4

k=1max|ξ|≤c F (k, ξ)(
λmin
2

)
c2

<

∑4
k=1 F (k, d)

d2

(Γ(0.25))2
∑4

k=1

(
(k)−0.75

)2 ≃ 0.848.

5. Multiple solutions

By using multiple locale critical points theorem, one can show that problem (1.2) has
multiple solutions, precisely it has at least two or three solutions.
Before providing the mentioned result we recall that a continuously differentiable functional
I defined on a real Banach space X satisfies the Palais-Smale condition, the (PS) - condition
for short, if every sequence {un} such that {I(un)} is bounded and I

′
(un) −→ 0 in X∗ as

n −→ ∞ has a convergent subsequence.
In the following, we prove that the functional Iλ satisfies the Palais–Smale condition.
Put

L∞ := min
k∈[1,T ]

(
lim inf
ξ→∞

F (k, ξ)

|ξ|2

)
, and λ∗ :=

λmax

2L∞
.

Lemma 5.1. Let f : [1, T ]×R → R be a continuous function. If L∞ > 0 then the functional
Iλ satisfies the Palais–Smale condition and it is unbounded from below for all λ ∈]λ∗,+∞[.

Proof. Let us fix λ > λ∗. Assume that a sequence {un} is such that {Iλ(un)} is bounded and
I ′λ(un) → 0 as n → ∞. Since W is finite dimensional, it is sufficient to show that {un} is
bounded. Put

u+n (k) := max{0, un(k)} and u−n (k) := max{0,−un(k)}
for all n ∈ N and for all k ∈ [0, T ]. By straightforward computation we can check that for all
n ∈ N and k, k′ ∈ [1, T ]

(5.1) u+n (k)u
−
n (k) = 0 and u+n (k)u

−
n (k

′) ≥ 0, k ̸= k′.

Due to be negative the elements of the matrix A except the original diameter, (u+n )
†Au− ≤ 0

and (u−n )
†Au+ ≤ 0. So,

Φ′(un)(u
−
n ) =

T∑
k=1

(k∇α
0 (un(k)))

(
k∇α

0u
−
n (k)

)
+
(
T+1∇α

k (un(k))
) (

T+1∇α
ku

−
n (k)

)
= Φ′ (u+n − u−n

)
(u−n ) = Φ′ (u+n ) (u−n )− Φ′ (u−n ) (u−n )

=
(
u+n
)†Au−n −

(
u−n
)†Au−n

=
(
u+n
)†Au−n − ∥u−n ∥2 ≤ −∥u−n ∥2 ≤ 0,

and
Φ′(u−n )(u

−
n ) =

(
u−n
)†Au−n = ∥u−n ∥2 ≥ 0.
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Moreover, by the assumption of f and by the definition of u−n we deduce that

Ψ′(un)(u
−
n ) =

T∑
k=1

f(k, un(k))u
−
n (k) ≥ 0,

and in a consequence

0 ≤ ∥u−n ∥2 ≤ −Φ′(un)(u
−
n ) ≤ −Φ′(un)(u

−
n ) + λΨ′(un)(u

−
n ) = −I ′λ(un)(u

−
n )

for all n ∈ N.
Since I ′λ(un) → 0 as n → ∞, hence ∥u−n ∥ → 0 as n → ∞. Thus, there exists N > 0 such that

| (u−n )
†Au−n | < 1 for any n ≥ N and according to the constant A, then 0 ≤ u−n (k) < L for any

k ∈ [1, T ]N0 and for any n ∈ N, where L = max{1,maxk∈[1,T ]N0
{u−1 (k), u

−
2 (k), u

−
3 (k), ..., u

−
N−1(k)}}.

This means that {u−n } is bounded, and un(k) > −L for any k ∈ [1, T ]N0 and for any n ∈ N.
Now, by the similar arguing in [24] and arguing by a contradiction, we will show that

{un} is bounded. Suppose that {un} is unbounded. We may assume that ∥un∥ → ∞. From
lim infξ→∞

F (k,ξ)

|ξ|2 ≥ L∞ for every k ∈ [1, T ] there exists δk > 0 such that

F (k, ξ) > L∞ |ξ|2 for all ξ > δk.

Moreover, for all ξ ∈ [−L, δk] we have

F (k, ξ) ≥ min
ξ∈[−L,δk]

F (k, ξ) ≥ min
ξ∈[−L,δk]

F (k, ξ) + L∞

(
|ξ|2 − (max{δk, L})2

)
≥ L∞ |ξ|2 −max{L∞(max{δk, L})2 − min

ξ∈[−L,δk]
F (k, ξ), 0}

= L∞ |ξ|2 −Q(k),

where Q(k) = max{L∞(max{δk, L})2 − minξ∈[−L,δk] F (k, ξ), 0} possesses only non-negative
values for every k ∈ [1, T ]. Eventually,

F (k, ξ) ≥ L∞ |ξ|2 −Q(k), ∀ξ ∈ (−L,+∞), ∀k ∈ [1, T ].

Due to un > −L for all n ∈ N, we conclude that

(5.2) F (k, un(k)) ≥ L∞ |un(k)|2 −Q(k), ∀n ∈ N, ∀k ∈ [1, T ].

By (5.2) and (3.5) we get

(5.3) Ψ(un(k)) =
T∑

k=1

F (k, un(k)) ≥ L∞∥un∥22 −Q ≥ L∞
∥un∥2

λmax
−Q,

where

Q =
T∑

k=1

Q(k).
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By (5.3) and (3.11) we infer that
Iλ(un) = Φ(un)− λΨ(un)

≤ ∥un∥2

2
− λL∞

∥un∥2

λmax
+ λQ

=

(
1

2
− λ

L∞
λmax

)
∥un∥2 + λQ

=
L∞
λmax

(
λmax

2L∞
− λ

)
∥un∥2 + λQ

=
L∞
λmax

(λ∗ − λ) ∥un∥2 + λQ

Since ∥un∥ → ∞ and λ∗−λ < 0, so Iλ(un) → −∞ and this is an absurd. Hence Iλ satisfies
the Palais–Smale condition for all λ ∈]λ∗,∞[.

It remains to establish that Iλ is unbounded from below. Let a sequence {un} be such that
{u−n } is bounded and {u+n } is unbounded and then ∥un∥ → ∞. Arguing as before one has
Iλ(un) → −∞ for all λ ∈]λ∗,+∞[ and the proof is complete. □

Now, we provide the main result of this section. Main results ensures the existence of two
solution with requiring condition at infinity. Here we point out a consequence of Theorem 2.3
as follows.

Theorem 5.2. Let fixed α ∈ (0, 1) and T ≥ 2 and f : [1, T ]×R → R be a continuous function
and

lim inf
ξ→∞

F (k, ξ)

|ξ|2
= ∞.

Then for any

λ ∈ Λ =

]
0,

λmin

2
sup
c>0

c2∑T
k=1max|ξ|≤c F (k, u(k))

[
,

the problem (1.2) has at least two solutions.

Proof. Fix λ as in the conclusion and c such that λ < λmin
2

c2∑T
k=1 max|ξ|≤c F (k,u(k))

. Owing to
Lemma 5.8 and L∞ = +∞, the functional Iλ satisfies the Palais–Smale condition and it is
unbounded from below. Arguing as in the proof of Theorem 4.1 and putting r =

(
λmin
2

)
c2,

we obtain
supu∈Φ−1]−∞,r[Ψ(u)

r
≤
∑T

k=1max|ξ|≤c F (k, ξ)(
λmin
2

)
c2

< +∞.

Therefore, owing to Theorem 2.3, for each

λ ∈
]
0,

(
λmin
2

)
c2∑T

k=1max|ξ|≤c F (k, ξ)

[
⊂ Λ,

the conclusion is achieved. □

Corollary 5.3. The proof of Theorem 1.1(2) is a conclusion that follows from Theorem 5.2.
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Example 5.4. For any
λ ∈

]
0,

λmin

8T

[
,

The problem
T+1∇0.75

k

(
k∇0.75

0 (u(k))
)
+ k∇

0.75
0

(
T+1∇0.75

k (u(k))
)
= λ[2u(k)(eu(k))2

+2u(k)2(eu(k))2 + 1], k ∈ [1, T ],

u(0) = u(T + 1) = 0,

has at least two solutions. In fact, that is enough to apply Theorem 5.2 to the function

f(s) =

{
2s(es)2 + 2s2(es)2 + 1, s ≥ 0 ,

1, s ≤ 0.

taking into account that supc>0
c2

max|ξ|≤c F (ξ) ≥ 1
4 , where F (s) = s2(es)2 + s, for s > 0 and

L∞ = +∞.
Also we point out a consequence of Theorem 2.4 as follows.

Theorem 5.5. Let fixed α ∈ (0, 1) and T ≥ 2 and f : [1, T ]×R → R be a continuous function
such that L∞ > 0 and assume that there are two positive constants c, d, with

(5.4) d2

(Γ(1− α))2

T∑
k=1

(
(k)−α

)2
<

(
λmin

2

)
c2,

such that

(5.5)
∑T

k=1max|ξ|≤c F (k, ξ)(
λmin
2

)
c2

< min


∑T

k=1 F (k, d)

d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2 , 2L∞
λmax

 .

Then for any

λ ∈

max


d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2
∑T

k=1 F (k, d)
,
λmax

2L∞

 ,

(
λmin
2

)
c2∑T

k=1max|ξ|≤c F (k, u(k))

 ,

the problem (1.2) has at least two non-trivial solutions u1, u2 ∈ W such that ∥u1∥∞ < c.
Proof. Our aim is to apply Theorem 2.4 to our problem. Thus, take X = W , and put Φ, Ψ
and Iλ as in (3.8) and (3.9). Clearly, infX Φ = Φ(0) = Ψ(0) = 0 and (H) holds. Arguing as
in the proof of Theorem 4.1 and putting r =

(
λmin
2

)
c2, we obtain (5.4) and

supu∈Φ−1]−∞,r]Ψ(u)

r
<

Ψ(ū)

Φ(ū)
,

where ū be as in (4.4). So the condition (2.1) holds. By (5.5) and Lemma 5.8 for any

λ ∈

max

 d2

(Γ(1− α))2

T∑
k=1

(
(k)−α

)2
F (k, d)

, λ∗

 ,

(
λmin
2

)
c2∑T

k=1max|ξ|≤c F (k, u(k))

 ⊆ [λ∗,+∞)

the functional Iλ satisfies the Palais–Smale condition and it is unbounded from below. There-
fore, owing to Theorem 2.4, the proof is complete. □



A SURVEY ON MULTIPLICITY RESULTS 53

We now present an example to illustrate the result of Theorem 5.5.

Example 5.6. Suppose that

f(x) =
d

dx

x2 cosh

10e
−1

10 sinh2(x)

sinh(x)

 , U0(u(x)) =

{
0, u(x) < 0

1, u(x) ≥ 0,

(see the graph of f(x) in the Figure 2). The problem

Figure 2. The graph of the function f(x)

{
5∇0.75

k

(
k∇0.75

0 (u(k))
)
+ k∇

0.75
0

(
5∇0.75

k (u(k))
)
= λU0(u(k))f(u(k))(10

−7k),

k ∈ [1, 4], u(0) = u(5) = 0,

for every λ ∈]205.57, 1862.58[ has at least two non-trivial solutions. Indeed, T = 4, α = 0.75,
B, D, A, λmax and λmin are as the same as in the Example 4.6. Now by taking c = 1,
d = 0.434 then,

d2

(Γ(0.25))2

4∑
k=1

(
(k)−0.75

)2
= 0.2073134614,

(
λmin

2

)
c2 =

(
69945/32768− 1/32768

√
2834119345

2

)
c2 = 25.497,

thus the condition (5.4) holds. Let F (k, ξ) =
∫ ξ
0 U0(t)f(t)10

−7kdt, then for ξ > 0, F (k, ξ) =∫ ξ
0 U0(t)f(t)10

−7kdt = 10−7kξ2 cosh

(
10e

−1
10 sinh2(ξ)

sinh(ξ)

)
and for ξ ≤ 0, F (k, ξ) =

∫ ξ
0 U0(t)f(t)10

−7kdt =

0, (see the graph of F (x) in the Figure 3).so L∞ = 1 and
4∑

k=1

max
|ξ|≤c

F (k, ξ) =

4∑
k=1

10−7k ×

{
F (0.46492), c ≥ 0.46492

F (c), c < 0.46492.

where F (0.46492) = 78107.79252 and
4∑

k=1

F (k, d) = F (d)
4∑

k=1

10−7k = 0.007311944163,
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Figure 3. The graph of the function F (x), where F ′ = f

and ∑4
k=1max|ξ|≤c F (k, ξ)(

λmin
2

)
c2

= 0.0005368869455,

∑4
k=1 F (k, d)

d2

(Γ(0.25))2
∑4

k=1

(
(k)−0.75

)2 = 0.03526999219,

2L∞
λmax

= 0.3891688210,

thus the condition (5.5) holds. Then for any

λ ∈
]
max

{
1

0.03526999219
,

1

0.3891688210

}
,

1

0.0005368869455

]
= ]205.5663139, 1862.589524] ,

the problem has at least two non-trivial solutions uλ,1, uλ,2 ∈ W such that Iλ(uλ,1) < 0 <
Iλ(uλ,2).

Example 5.7. The problem
5∇0.75

k

(
k∇0.75

0 (u(k))
)
+ k∇

0.75
0

(
5∇0.75

k (u(k))
)
=

λU0(u(k))
[
u3(k)sinh(u4(k))

cosh(u4(k))3
+ (u(k)2 )10

]
, k ∈ [1, 4],

u(0) = u(5) = 0,

for every λ ∈]0.412, 0.45[ has at least two non-trivial solutions. Indeed, T = 4, α = 0.75, B,
D, A, λmax and λmin are as the same as in the Example 4.6. Now by taking c = 3, d = 1.1
then,

d2

(Γ(0.25))2

4∑
k=1

(
(k)−0.75

)2
= 1.331782836,

(
λmin

2

)
c2 =

(
69945/32768− 1/32768

√
2834119345

2

)
c2 = 2.2946,

thus the condition (5.4) holds. Put f(k, x) = x3 sinh(x4)

cosh3(x4)
+ (x3 )

10, (see the graph of f(k, x) in

the Figure 4 ), then F (k, x) =
(
1− 1/(cosh2(x4)) + 1

11
x11

310

)
, so L∞ = +∞,
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Figure 4. The graph of the function f(x, k)

4∑
k=1

max
|ξ|≤c

F (k, ξ) =

(
1− 1/(cosh(3))2 +

1

11

311

310

)
= 5.0909

4∑
k=1

F (k, d) =

(
1− 1/(cosh(1.1))2 +

1

11

1.111

310

)
(ln 5) = 3.228838252

2.218643772 ≃
∑4

k=1max|ξ|≤c F (k, ξ)(
λmin
2

)
c2

<

∑4
k=1 F (k, d)

d2

(Γ(0.25))2
∑4

k=1

(
(k)−0.75

)2 ≃ 2.424448014.

Now, we provide the existence of at least three solutions for λ > 0 being in a certain
interval.
In the following, we prove that the functional Iλ satisfies the coercive provided that the
required assumption holds.

Put

L∞ := max
k∈[1,T ]

(
lim sup
ξ→∞

F (k, ξ)

|ξ|2

)
.

Lemma 5.8. The functional Iλ satisfies the coercive condition for any λ ∈]0, λmin
2L∞ [ provided

that 0 ≤ L∞ < ∞.

Proof. The proof is similar to the proof of [17, Lemma 5.1(i)]. □

Corollary 5.9. In Theorem 4.5, if one adds the condition L∞ = 0, then by Theorem 2.5, we
give a result of at least three solutions for any

λ ∈

 d2

(Γ(1− α))2

T∑
k=1

(
(k)−α

)2
F (k, d)

,

(
λmin
2

)
c2∑T

k=1max|ξ|≤c F (k, u(k))

 .

In the next example, the results should be more precise than Example 4.6, by Corollary
5.9.

Example 5.10. In the Example 4.6, it is clear that L∞ = 0, so by Corollary 5.9 one can
obtain more solutions that is, the problem for every λ ∈]1.18, 15.84[ has at least three solutions
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