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1. Introduction and Preliminaries

Orlicz and Morrey spaces are two important generalizations of the usual
Lebesgue spaces which so many research papers are based on them in the
last decade; see the below two subsections for definition and some references
of the weighted ones. Recently, the Riesz-Thorin interpolation theorem was
proved in setting of Lebesgue-Morrey spaces in [15]; see [1] as a monograph.
In this work, by a similar method, we give an extension of this theorem in
setting of (weighted) Orlicz and Morrey spaces.

1.1. Weighted Morrey Spaces. For each a ∈ Rn and t > 0, the set
{a + y : a ∈ Rn, y ∈ [0, t]n} is called a cube in Rn. Let p ∈ [1,∞) and
λ ∈ [0, 1]. Then, the Morrey norm is defined by

∥f∥Mp,λ := sup
{
|Q|

−λ
p ∥f∥Lp(Q) : Q is a cube in Rn

}
,

for all measurable function f : Rn → C. Then, the set of all complex-
valued measurable functions f on Rn with ∥f∥Mp,λ < ∞ is denoted by Mp,λ

and called a Morrey space. Morrey Spaces are generalization of Lebesgue
spaces. In fact, for each p ≥ 1 we have Mp,1 = Lp(Rn). These spaces were
initiated by C.B. Morrey in [3] while he was investigating elliptic differential
equations, and then refined by Peetre [6]; see [9, 2, 10] as some recent works
on this field.

Let w : Rn → (0,∞) be a measurable function. For each measurable
function f : Rn → C we denote

∥f∥(p,λ,w) := ∥wf∥Mp,λ .
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The set of all measurable functions f : Rn → C with ∥f∥(p,λ,w) < ∞ is
denoted by Mp,λ

w and is called the weighted Morrey space. Simply, we put
∥f∥Q,p,w := ∥fw∥Lp(Q),

where Q is a cube in Rn.

1.2. Weighted Orlicz Spaces. The books [7, 8] are two main monographs
for Orlicz spaces. For giving the definition of an Orlicz space, one needs to
recall Young functions. A convex even function Φ : R → [0,∞) is called a
Young function if Φ(0) = limx→0Φ(x) = 0 and limx→∞Φ(x) = ∞. We say
that a Young function Φ satisfies ∆2-condition (and write Φ ∈ ∆2) if for
some constants c > 0 and x0 ≥ 0,

Φ(2x) ≤ cΦ(x), (x ≥ x0).

A continuous Young function Φ : R → [0,∞) is called a nice Young function
(or simply N-function) if limx→0Φ(x)/x = 0, limx→∞Φ(x)/x = ∞, and
Φ(x) = 0 implies that x = 0.

The complementary of a Young function Φ is defined by
Ψ(x) := sup{y|x| − Φ(y) : y ≥ 0}, (x ∈ R).

In this case, (Φ,Ψ) is called a complementary pair.
In sequel (X ,A, µ) would be a measure space, and we assume that the

non-negative measure µ has the finite subset property i.e. for each E ∈ A
with µ(E) > 0, there exists a set F ∈ A such that F ⊆ E and 0 < µ(F ) < ∞
(see [7, page 46]). For each measurable function f : X → C we denote

∥f∥Φ := inf

{
λ > 0 :

∫
X
Φ

(
|f(x)|
λ

)
dµ(x) ≤ 1

}
.

Then, the set of all measurable functions f : X → C with ∥f∥Φ < ∞ is
denoted by LΦ(X ) and is called an Orlicz space. Since, by our assumption,
µ has the finite subset property, LΦ(X ) is a complete normed space [7]. For
each 1 < p < ∞, the function Φp defined by Φp(x) := |x|p for all x ∈ R, is a
Young function and the Orlicz space LΦp(X ) is same as the usual Lebesgue
space Lp(X ). Orlicz spaces, as extensions of Lebesgue spaces, have been
studied in several recent decades; see for example [4, 5, 11, 12, 13, 14] as
some recent works regarding Orlicz spaces in the context of locally compact
groups and hypergroups.

Any measurable function w : X → (0,∞) is called a weight on X , and we
write w−1 := 1

w . The space of all measurable functions f on X such that
wf ∈ LΦ(X ) is called the weighted Orlicz space and is denoted by LΦ

w(X ).
For each f ∈ LΦ

w(X ) we put ∥f∥Φ,w := ∥wf∥Φ. Then, (LΦ
w(X ), ∥ · ∥Φ,w) is

also a Banach space. If Φ ∈ ∆2, then the dual of the Banach space LΦ
w(X )

equals LΨ
w−1(X ) (see [4]) via the duality formula

⟨f, g⟩ =
∫
X
f(x)g(x) dµ(x).
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2. Main Results

In this section, we give Riesz-Thorian interpolation theorem for weighted
Orlicz and weighted Morrey spaces. First we recall the following concept
from [7, Chapter VI].
Definition 2.1. Let (Φ0,Φ1) be a pair of Young functions and fix a number
0 < θ < 1. Then, the corresponding intermediate function Φθ is defined by
(2.1) Φ−1

θ := (Φ−1
0 )1−θ (Φ−1

1 )θ.

Now, we recall the following lemma from [7, Proposition 4, Chapter VI]
which plays a key role in the proof of the main result of this paper.
Lemma 2.2 (Three-Line Theorem). Let F be a bounded and continuous
finction on {z ∈ C : 0 ≤ Rez ≤ 1} and analytic on {z ∈ C : 0 < Rez < 1}.
Let M0,M1 > 0 be constant numbers such that

|F (it)| ≤ M0, |F (1 + it)| ≤ M1, (−∞ < t < ∞).

Then, for each 0 < θ < 1 we have
|F (θ + it)| ≤ M1−θ

0 M θ
1 , (−∞ < t < ∞).

In the next theorem, for each p > 0, we assume that 1/p+ 1/p′ = 1.
Theorem 2.3. Assume that (Φi,Ψi) (i = 0, 1) are complimentary pairs of
N-functions such that Φi ∈ ∆2 for i = 0, 1. Let 1 ≤ pi < ∞, 0 ≤ λi ≤ 1
(i = 0, 1), and 0 < θ < 1 be a fixed number. Let v0 and v1 be weight functions
on X , and w0 and w1 be weight functions on Rn. Let the mappings

k : Rn × C → C and k′ : X × C → C
satisfy the following properties:

(1) for each y ∈ Rn and t ∈ R, |k(y, it)| ≤ w0(y) and |k(y, 1 + it)| ≤
w1(y).

(2) for each x ∈ X and t ∈ R, |k′(x, it)| v0(x) ≤ 1 and |k′(x, 1 +
it)| v1(x) ≤ 1.

(3) for each x ∈ X and y ∈ Rn, the mappings k(x, ·) and k′(y, ·) are
analytic. Also, for each z ∈ C, the mappings k(·, z) and k′(·, z) are
measurable.

Let

wθ(y) := k(y, θ)−p′θ and vθ(x) :=
1

k′(x, θ)
(x ∈ X , y ∈ Rn).

Assume that for each f ∈ LΦ0
v0 (X ) and g ∈ LΦ1

v1 (X ),
(2.2) ∥T (f)∥(p0,λ0,w0) ≤ M0 ∥f∥Φ0,v0 .

and
(2.3) ∥T (g)∥(p1,λ1,w1) ≤ M1 ∥g∥Φ1,v1 .

Then,
∥Tf∥(pθ,λθ,wθ) ≤ M1−θ

0 M θ
1 ∥f∥Φθ,vθ ,
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for all f ∈ LΦθ
vθ
(X ), where Φθ is the intermediate function corresponding to

Φ0 and Φ1, and

(2.4) pθ :=
(
(1− θ)p−1

0 + θp−1
1

)−1
, λθ := (1− θ)λ0pθp

−1
0 + θλ1pθp

−1
1 .

Proof. For each complex number z put sgn(z) = z
|z| if z ̸= 0, and sgn(z) = 0

of z = 0. Let f be a simple function on X with ∥f∥Φθ,vθ = 1. Define

A(x, z) := sgn(f(x)) ·[Φ−1
0 (Φθ(|f(x)|vθ(x)))]1−z ·[Φ−1

1 (Φθ(|f(x)|vθ(x)))]z ·k′(x, z)

for all x ∈ X and z ∈ C. Fix a cube Q in Rn. Let g be a simple function on
Rn with ∥g∥Q,p′θ,w

−1
θ

= 1. Define

B(y, z) := sgn(g(y)) |g(y)|
p′θ
p′z (wθ(y))

1
p′z k(y, z)

for all y ∈ Rn and z ∈ C, where

pz :=
(
(1− z)p−1

0 + zp−1
1

)−1
, λz := (1− z)λ0pzp

−1
0 + zλ1pzp

−1
1 .

Then, for all t ∈ R,∫
Q

(
|B(y, it)|w−1

0 (y)
)p′0 dy =

∫
Q

((
(|g(y)|w−1

θ (y))p
′
θ

) 1
p′0 · |k(y, it)|w−1

0 (y)

)p′0

dy

≤
∫
Q
(|g(y)|w−1

θ (y))p
′
θ dy

= ∥g∥p
′
θ

Q,p′θ,w
−1
θ

≤ 1.

This implies that

(2.5) ∥B(·, it)∥Q,p′0,w
−1
0

≤ 1.

Similarly, for all t ∈ R we have∫
Q

(
|B(y, 1 + it)|w−1

1 (y)
)p′1 dy =

∫
Q

((
(|g(y)|w−1

θ (y))p
′
θ

) 1
p′1 · |k(y, it)|w−1

1 (y)

)p′1

dy

≤
∫
Q
(|g(y)|w−1

θ (y))p
′
θ dy

= ∥g∥p
′
θ

Q,p′θ,w
−1
θ

≤ 1,

and so,

(2.6) ∥B(·, 1 + it)∥Q,p′1,w
−1
1

≤ 1.
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Also, for all t ∈ R,∫
X
Φ0 (|A(x, it)| v0(x)) dµ(x) =

∫
X
Φ0

(
Φ−1
0 (Φθ(|f(x)|vθ(x))) · k′(x, it) v0(x)

)
dµ(y)

≤
∫
X
Φ0

(
Φ−1
0 (Φθ(|f(x)|vθ(x)))

)
dµ(y)

≤
∫
X
Φθ(|f(x)|vθ(x)) dµ(y)

≤ 1.

This implies that

(2.7) ∥A(·, it)∥Φ0,v0 ≤ 1.

Similarly, by the hypothesis one can see that

(2.8) ∥A(·, 1 + it)∥Φ1,v1 ≤ 1

for all t ∈ R, since∫
X
Φ1 (|A(x, 1 + it)| v1(x)) dµ(x) =

∫
X
Φ1

(
Φ−1
1 (Φθ(|f(x)|vθ(x)))

· k′(x, 1 + it) v1(x)
)
dµ(y)

≤
∫
X
Φ1

(
Φ−1
1 (Φθ(|f(x)|vθ(x)))

)
dµ(y)

≤
∫
X
Φθ(|f(x)|vθ(x)) dµ(y)

≤ 1.

Now, define

FQ(z) := |Q|
−λz
pz

∫
Q
T (A(·, z))(y)B(y, z) dy, (z ∈ C).

Then, for each t ∈ R we have

|FQ(it)| ≤ |Q|
−λ0
p0

∫
Q
|T (A(·, it))(y)| |B(y, it)| dy

≤ |Q|
−λ0
p0 ∥T (A(·, it))∥Q,p0,w0 ∥B(·, it)∥Q,p′0,w

−1
0

≤ |Q|
−λ0
p0 ∥T (A(·, it))∥Q,p0,w0

≤ ∥T (A(·, it))∥(p0,λ0,w0)

≤ M0 ∥A(·, it)∥Φ0,v0 ≤ M0,
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thanks to the relations (2.5), (2.7) and (2.2). Similarly, by the relations
(2.8), (2.6) and (2.3), for each t ∈ R we have

|FQ(1 + it)| ≤ |Q|
−λ1
p1

∫
Q
|T (A(·, 1 + it))(y)| |B(y, 1 + it)| dy

≤ |Q|
−λ1
p1 ∥T (A(·, 1 + it))∥Q,p1,w1 ∥B(·, 1 + it)∥Q,p′1,w

−1
1

≤ |Q|
−λ1
p1 ∥T (A(·, 1 + it))∥Q,p1,w1

≤ ∥T (A(·, 1 + it))∥(p1,λ1,w1)

≤ M1 ∥A(·, 1 + it)∥Φ1,v1 ≤ M1.

So, by Three-Line Theorem we have

(2.9) |Q|
−λθ
pθ

∣∣∣∣∫
Q
T (f)(y) g(y) dy⟩

∣∣∣∣ = |FQ(θ)| ≤ M1−θ
0 M θ

1 ,

since f = A(·, θ) and g = B(·, θ). Finally,

∥T (f)∥(pθ,λθ,wθ) = sup
{
|Q|

−λθ
pθ ∥T (f)wθ∥Lpθ (Q) : Q is a cube in Rn

}
= sup

{
|Q|

−λθ
pθ

∣∣∣∣∫
Q
T (f)(y)h(y) dy⟩

∣∣∣∣ : Q is a cube in Rn,

h is simple and ∥h∥Q,p′θ,w
−1
θ

= 1
}

≤ M1−θ
0 M θ

1 .

This completes the proof because the set of all simple functions is dense
in Mpθ,λθ

w−1
θ

. □

Example 2.4. Let (Φi,Ψi) (i = 0, 1) be complimentary pairs of N-
functions. Suppose that 0 < θ < 1 is a fixed number, 1 ≤ pi < ∞,
0 ≤ λi ≤ 1 (i = 0, 1), v0 and v1 are weight functions on X , and w0 and w1

are weight functions on Rn. Then, the functions k and k′ defined by:
k(y, z) := w0(y)

1−z w1(y)
z

and
k′(x, z) := v0(x)

z−1v1(x)
−z,

where x ∈ X , y ∈ Rn and z ∈ C, satisfy the hypothesis of Theorem 2.3.
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