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ON THE EXISTENCE OF SOLUTIONS OF A GENERALIZED
MONOTONE EQUILIBRIUM PROBLEM

HADI KHATIBZADEH* AND MAHNAZ REZAEI

ABSTRACT. Blum and Oettli in their seminal paper studied the existence of equilibrium
points for monotone bifunctions. In this work, we extend their main result by replacing
monotone bifunction with a more general bifunction and prove the existence of an equilib-
rium point.
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1. Introduction and Background

Throughout the paper, we assume that X is a real Banach space with norm || - || and
K is a closed convex subset of X. By a bifunction we mean any function f : K x K —
R such that f(z,z) =0, Vze K.

Definition 1.1. Let f : K x K — R be a bifunction. Consider the equilibrium problem (EP)
of finding * € K such that

f(@,y) >0, VyeK.

T is called an equilibrium point for f and K. The set of all equilibrium points for f and K is
denoted by EP(f, K).

Definition 1.2. Given a nonempty subset K of a Banach space X, the bifunction f : K x K —
R is said to be

e monotone iff
f(z,y) + fly,z) <0, Va,y € K.
e pseudo-monotone if f(xz,y) > 0 with x,y € K, then f(y,z) < 0.

e quasi-monotone if f(x,y) > 0 with z,y € K, then f(y,z) <0.

e O-monotone if there is a function 6 : K x K — R such that
fl@,y) + fly, ) <0z, y)|lz —yl, Vo,ye K
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2 H. KHATIBZADEH AND M. REZAEI

Example. Let f : [0,400) x [0, +00) — R with f(z,y) = 22 — 2y. Obviously it is not
monotone but it is #-monotone with 6(z,y) = |z — y|.

Existence of an equilibrium point for a monotone bifunction first studied by Blum and
Oettli in [6]. An equilibrium point for a monotone bifunction can be a fixed point for a
nonexpansive mapping, a solution of a variational inequality for a maximal monotone operator
and a minimum point of a convex function. It has also some other interpratations in nonlinear
problems. Therefore equilibrium problems unify several problems in nonlinear analysis and
optimization (see [(]). Equilibrium problems for monotone and some variants of generalized
monotone bifunctions has been studied by several authors (see for example [3, 4, 5, 7, 8, 9, 10,

, 12, 13]). But the researchers have paid more attention to some generalized monotonicity
of pseudo- and quasi-monotone type so far. Recently some general monotonicity conditions of
different types for operators and bifunctions studied by authors (see [1, 2, 10, 11]). One of this
conditions is #-monotonicity that was defined in above. In this paper, we extend the existence
theorem of Blum and Oettli [6] form monotone bifunctions to f-monotone bifunctions.

2. Main Results

In this section we prove a basic existence result for the equilibrium problem in the case
where f(z,y) = g(x,y) + h(z,y). All assumptions on g and h are the same as assumed by
Blum and Oettli [6] except monotonicity of g that we replace it by #-monotonicity. Before
the main theorem we recall a definition.

Definition 2.1. Let K and C be convex sets with C' € K. Then corexgC is defined
through a € corexC ifa € C, and C N (a,y) # @, forall y € K\C, where (a,y) =
{ta+(1—-t)y; 0 <t <1}

Theorem 2.2. Let the following assumptions hold

o g: K x K — R has the following properties:
— g(x,z) =0, Vx e K,
— Forallz,y € K the functiont € [0,1] — g(ty+(1—t)x,y) is upper-semicontinuous
at t =0; (g is called uper-hemicontinuous respect to the first argument);
— g is convex and lower semicontinuous in the second argument;
— 9(@,y) + 9(y, ) < 0(z,y)|z —yll, Va,y € K, (6 —monotonicity);
where
o 0: K x K — R satisfies the following conditions:
- O(z,z)=0,VzxekK;
— 0 is upper semicontinuous respect to the second argument;
o h: K x K — R has the following properties:
— h(z,z) =0, VzeK;
— h is upper semicontinuous in the first argument;
— h is convex in the second argument.
e (Coercivity condition) There exists C C K nonempty, compact and convezr such that
for every x € C\ corexC there exists a € corexC such that g(x,a) + h(z,a) <0.

Then there exists T € C' such that 0 < ¢g(Z,y) + h(Z,y), Yy e K.

The proof goes over the following three lemmas, for which the hypotheses remain the same
as for Theorem 2.2.
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Lemma 2.3. There exists T € C such that
9(y,7) < 0(y,T)lly —=| + h(7T,y), Vy € C.
Proof. For each y € C define
Sly) ={z e C: gly,x) <0(y,z)|ly — z[| + h(z,y)}, VyeC

By the assumptions on g and 6, S(y) is closed and since C' is compact then S(y) is compact
for every y € C. Tt is enough we show {S(y) : y € C} has finite intersection property. Let
{yi : i € I} be a finite and arbitrary subset of C and ¢ € co{y; : i € I} (convex hull of
{yi+ i€ I}) be arbitrary. Therefore there are nonnegative scalers y; such that > .., p; =1
and ¢ = ) ;.7 #iyi- Now suppose that ¢ is not in S(y;), Vi€ 1. i.e.

Multiplying both sides by > pi, then by the conditions on h, we get

D gy €) > > 0w, Ollys — Sl + 1(C i)
icl icl
> wib(yi Ollye — Sl + Y (S, i)
icl el
i€l
(2.2) > > by, Ollyi — <
i€l
Adding both sides of the recent inequality by > ..; 1tig(¢,yi), and using the #-monotonicity
of g, we get

> wib(i, Ollye — ¢l = milg(yi ) + 9(¢,w)
iel iel
>3 pab(yi Olly — ¢+ pig(Cvi)
iel i€l
> b (yi Olly — <l + 9(¢, )
il
el
which is a contradiction. Then there is ¢ € I such that

9(Wi, Q) < 0(yi, Ollyi — <l + A (¢, wi)-
Therefore for some i € I, ( € S(y;). Since ¢ is an arbitrary element of co{y; : i € I}, we
conclude that
co{y;: 1 € I} C UierS(yi)-
Then by the KKM theorem, we get NyccS(y) # 2. O
Lemma 2.4. The following statements are equivalent

(a) 3T €C, g(y,7) <O, y)IT -yl + (T, y), VyecC;
()3T C, 0<g(T,y)+h(=,y), Vyel.
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Proof. (b) = (a): From #-monotonicity of g, we have

9(Z,y) + 9(y, ) + (7,y) < 0(7,9) |17 — yll + h(Z, y)
From (b), we get
9(y,7) < 0(z,y)l|T — yll + h(z, y)
(a) = (b): Let y € C be arbitrary, and take x; =ty + (1 — ¢)Z and 0 < ¢t < 1. Since C is
convex, then xy € C. Take y = 2 in (a), then

9(xt, &) < 0(Z,1)||wy — T + h(Z, )

and
0= g(zt, 21)
<tg(ze,y) + (1 —t)g(xe, 2)
< tg(zy, ) (1 =)0, z) |7 — 2| + h(Z, 24))
< tg(xe,y) + (1 —6)(0(z, 2,) | — || + th(Z,y) + (1 — t)h(Z, T))

)
= t(g(xt, ) (1 =t)h(z,y)) + (1 = 1)0(Z, z¢)||z; — Z]|
= t(g(ze,y) + (1 = Dh(z,y)) + (1 = )t0(Z, z1)|ly — |-
Dividing both sides by ¢ and letting ¢ — 0, by semicontinuous of g and 6, we get the result. [

y)
y)

Lemma 2.5. [6] Assume that ¥ : K — R is convex, xg € corexC, V(xg) <0, and V(y) >
0, VyeC. Then ¥(y) >0, Vye K.

Now we present the proof of Theorem 2.2.

Proof. From Lemma 2.3, we obtain T € C' with

9(y,7) <0y, T)ly — || + h(Z,y), VyeC

From Lemma 2.4 follows that

0<g(@y)+n@y), Wyel
Set U(-) := ¢(T,-) + h(ZT,.), then ¥(-) is convex and ¥(y) > 0, Vy e C. If T € C, then
set xg ;= . If ¥ € C"\corexC, then set xy := a, where a is as in coercivity assumption for

x = Z. In both cases xy € corexC, and ¥(xp) < 0. Hence it follows from Lemma 2.5 that
U(y) >0, Vy € K,ie., g(T,y) +h(T,y) >0, VyeK. O

Corollary 2.6. Let the following assumptions hold

o g: K x K — R has the following properties:
—g(x,z) =0, VzeK,
— Forallz,y € K the functiont € [0,1] — g(ty+(1—t)x,y) is upper-semicontinuous
at t =0 (hemicontinuity);
— g is convex and lower semicontinuous in the second argument;
— 9(@,y) + 9(y, ) < O(z,y)|z—yll, Vz,yecK(O—monotonicity);
where
e 0: K x K — R" has the following properties:
— f(z,x) =0, VzeK;

— 0 is upper semicontinuous respect to the second argument.
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o There exists C' C K nonempty, compact and convex such that for every x € C"\ corex C

there exists a € corexC such that
g(z,a) <0.

Then there exists T € C' such that 0 < g(T,y), Vy € K.
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