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Abstract. The important issue of the aggregation preference is how
to determine the weights associated with different ranking places and
DEA models play an important role in this subject. DEA models use
assignments of the same aggregate value (equal to unity) to evaluate
multiple alternatives as efficient. Furthermore, overly diverse weights
can appear, thus, the efficiency of different alternatives obtained by dif-
ferent sets of weights may be unable to be compared and ranked on
the same basis. In order to solve two above problems, and rank all the
alternatives on the same scale, in this paper, we propose a multiple ob-
jective programming (MOP) approach for generating a common set of
weights in the DEA framework. Also, we develop a novel model to make
a maximum discriminating among candidates’ rankings. Additionally,
we present two scenarios to provide suitable strategies for solving the
proposed MOP model.

MSC(2010): 90B50; 90C05; 90C70.
Keywords: Multi-objective programming, Voting, Aggregation of pref-
erences, Data envelopment analysis, Common set of weights, Ranking.

1. Introduction
Ranking a group or social from a set of individual preferences plays a bold
and important role in decision-making context. In this class of methodolo-
gies, usually there are some decision-makers (DMs) in which each DM, se-
lects a subset of the alternatives and places them in a ranked order. Assume
that there are a set A = A1, , An, (n > 3), of n alternatives (candidates)
that have been compared and assessed by a specified group of experts as
DMs (Izadikhah and Saen [1])). For the purpose of evaluating, each DM
should give their own opinion by selecting a subset of (k) alternatives (or
the complete set A) and ranking them from most to least preferred. One of
the primary related methods is weighting scoring rules (WSR). This method
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operates by obtaining a score that depends on the rank position of the can-
didate in the individual’s order of preferences. As a result, the alternatives
are ranked by the sum of obtained scores. The obtained final score for the
ith alternative is computed as Vi =

∑k
j=1wjvij . Where the weight of jth

rank-position votes is denoted by wj and the number of the jth rank po-
sitions votes that is obtained by ith candidate is denoted byvij . In WSR
method, the candidate with more votes in the first place is recognized as the
best and is considered as the origin of the family of preference-aggregation
methodologies. In this method, the weight of the first place is calculated
as the number of alternatives and the weight of the second place is one less
than the first place and so on. Cook and Kress [2] showed some models
like WSR that apply an imposed set of weights may fail to obtain a cor-
rect evaluation. Cook and Kress [2] applied a data envelopment analysis
(DEA) based methodology of Charnes et al. [3] for measuring the prefer-
ence scores without imposing any fixed weights from the outset (see [4, 5, 6].
Their proposed method obtained the most favorable weights for each alter-
native but their method very often leads to more than one alternative as
efficient. To avoid this drawback and to find a deserved winner among
the efficient alternative, Cook and Kress[2], presented a model to maximize
the gap between consecutive weights of the scoring vector and as a result
only one alternative is left efficient alternative. After that and in order to
rank the candidates, Green et al. [7] developed the cross-efficiency based
DEA evaluation methodology. Same as them, Noguchi et al.[8] was also ap-
plied the cross-efficiency evaluation to rank the alternatives (see [9, 10, 11]).
They could give a strong ordering constraint condition on weights. Inspir-
ing from the concept of super-efficiency proposed in Andersen and Petersen
[12] Hashimoto[13] developed an AR/exclusion model to discriminate among
efficient candidates. Obata and Ishii [14]investigated about the drawback
of the above methods in the presence of an inefficient alternative and pre-
sented another method without to need of any information about inefficient
candidates to discriminate efficient alternatives. Foroughi and Tamiz [15]
extended their procedure to rank non-DEA-efficient candidates. Wang et al.
[16] and Zerafat Angiz, et al. [17] developed DEA based models for solving
the preference voting system. In conventional DEA models each decision
making unit is allowed to measure its efficiency with the weights that are
only most favorable for itself. The problem that may be risen is the effi-
ciency scores of different DMUs obtained by different sets of weights may be
unable to be compared and ranked on the same basis [18]. Another problem
is that these methods cannot provide a fully discrimination, because of the
flexibility in the selection of weights, always there are more than one efficient
DMU. To overcome these problems, authors suggested finding a common set
of weights for DMUs, and as a result, a number of methodologies have been
proposed in the DEA context[19]. For instance, Ganley and Cubbin [20]
derived the common weights by maximizing the sum of the efficiencies of
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DMUs. Kao and Hung [21] developed a hybrid method based on multi-
ple objective nonlinear programming and compromise solution approach to
generate a common set of weights (see [22, 23]). In order to determine a com-
mon set of weights, Wang et al. [24] suggested ranking DMUs by imposing
a minimum weight restriction. The current study has some contributions as
follows. A new variant of Cook and Kress [2] with some interesting prop-
erties are provided. The proposed model is extended to the multi-objective
programming model to deal with common set of weights. Then, a new model
for estimating the maximum discriminating factor among candidates is de-
veloped. In order to solve the obtained MOLP model, two scenarios with
two linear one-objective models are presented. The numerical results indi-
cate that the proposed models provide complete ranking among candidates.
The structure of this paper is organized as follows. In the next section
the literature review is given. We present our proposed methods and their
properties in section 3. In section 4, a numerical example shows the capabil-
ities of the proposed models and finally conclusions is presented in section 5.

2. Literature Review
Here we review some important works that are related to our proposed

methodology.

2.1. Voting via DEA. One of the high usage concepts in decision-making
problems is evaluating and ranking candidates based on some individual
preferences. In order to evaluating the preference scores, firstly, Cook and
Kress[2] developed a DEA based model by calculating the most favorable
weights for each candidate. The bad thing about their model was the case of
finding more than one efficient alternative. They tried to overcome the prob-
lem by increasing the distance between consecutive weights in a way that
only one candidate is recognized as efficient. After that, Hashimoto [13]
suggested a super-efficiency ([12]) method to increase discrimination among
efficient alternatives. Recently, Ebrahimnejad et al. [25] applied a DEA
method alongside a simulation method for assessing efficiency score of each
candidate. Oukil and Amin [26] exploited power of individual appreciative-
ness in developing a procedure that integrates cross-evaluation, preference
voting, and ordered weighted averaging. Izadikhah and Farzipoor Saen [1]
developed a preference aggregation algorithm and used it to solve location
planning problem.

2.2. Common set of weights. The concept of common set of weights
(CSW) in data envelopment analysis firstly developed by Cook and Kress
[2] and Roll et al. [27]. By developing CSW based on some DEA models
and by removing the distance between upper and lower limits of weights,
Cook and Kress [20, 28] proposed a new methodology for solving a voting
system. Sinuany-Stern and Friedman [29] tried to use DEA model to find
a suitable CSW for providing a complete ranking. There are two different



48 M. IZADIKHAH AND E. KARAPINAR

aspects in CSW. The methods of the first aspect use a single objective
function. In this aspect, Liu and Hsuan Peng [19], Sun et al. [30] and
Saati and Nayebi [31] are some instances for this aspect. The second aspect
is methods that use multiple objective programming. In this aspect, the
methods of Jahanshahloo et al. [32], Cook and Zhu [33], Ruiz and Sirvent
[34], Carrillo and Jorge [35] and Salahi et al. [36] can be mentioned.

2.3. Review of Voting System Models. In this subsection we are going
to review Cook & Kress [2] and Obata & Ishii’s [14] models in preferential
voting system.

2.3.1. Cook and Kress’s model. It is assumed that, there are n alternatives
(candidates) in which each alternative i(i = 1, . . . , n) receives some number
vi1 of first place votes, vi2 of second place votes , . . . , vik of kth place votes.
In the other hand, vij denotes the number of jth-place ranks that candidate
i occupies (i = 1, . . . , n, j = 1, . . . , k). Thus we have a ranked voting data
which is obtained when voters select and rank more than one alternative.
Here, consider each voter selects k(> 0) alternatives from a set of n(k) alter-
natives and ranks them from top to kth place. The preference score Vi of the
alternative i is introduced as a weighted sum of votes with certain weights,
wji.e. vi =

∑k
j=1wjvij , (i = 1, . . . , n). By means of data envelopment anal-

ysis methodology, Cook and Kress [2] developed a method for estimating
preference scores without imposing any fixed weights from outset. The idea
behind their method for evaluating each alternative is assigning the most
favorable weights to that alternative. Their developed model for assessing
the alternative p is as model (2.3.1).

(2.3.1)

V ∗
p = Max

k∑
j=1

wjvpj

s.t


k∑

j=1
wjvij ≤ 1; i = 1, . . . , n,

wj + wj+1 ≥ d(j, ε); j = 1, . . . , k,
wk ≥ d(k, ε);

where d(., ϵ) called the “discrimination intensity function” which is mono-
tonic increasing in � and also the non-negative parameter � is called the
discriminating factor, and satisfies d(.,0)=0. The optimal score V ∗

p is the
preference score of the alternative p. In this method each alternative is re-
garded as a DMU (Decision Making Unit) in DEA. Thus, here each DMU
has k outputs (ranked votes) and has only one input of unity. The proposed
model is equivalent to the well-known DEA-AR model (See Thompson et
al. [37]) such that the constraints wj − wj+1d(j, ϵ) represent the assurance
region (AR). These constraints are introduced to show that the vote of the
higher place have a greater importance than that of the lower place. For the
discrimination intensity function d(.,�) Cook and Kress [2] introduced three
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special cases of d(., ϵ) : d(., ϵ) = ϵ, d(., ϵ) = ϵ
j and d(., ϵ) = ϵ

j! . Each of them
introduces different winner.

2.3.2. Obata and Ishii’s Model. Obata and Ishii [17] believe that to ob-
tain the maximum score of each alternative we should use weight vectors of
the same size. For this purpose, they normalized the most favorable weight
vectors for each candidate. Their proposed model for evaluate alternative p
is as Model (2.3.2).

(2.3.2)

1

V̂ ∗
p

= Min ||w||

s.t



k∑
j=1

wjvpj = 1,

k∑
j=1

wjvij ≤ 1, i = 1, . . . , n, i ̸= p,

wj − wj+1 ≥ d(j, ε), j = 1, . . . , k − 1,
wk ≥ d(k, ε);

The normalized preference score V̂ ∗
p is obtained as a reciprocal of the optimal

value and ‖.‖ is a certain norm.

2.3.3. Izadikhah and Farzipoor Saen [1]. Izadikhah and Farzipoor Saen
[1] used the [38, 39] method and the Cook and Kress [2] method to present a
new approach to rank candidates based on strong complementary slackness
condition, discriminant analysis, and discriminating factor as Model (2.3.3).

(2.3.3)

Max φ

s.t.



n∑
i=1

wivij + sj = 1, j = 1, ..., n,

−
n∑

i=1
wiPij + qj = −ε, j = 1, ..., n,

n∑
j=1

λjvij −
n∑

j=1
hjPij − ki = vip, i = 1, ..., n,

λj + sj ≥ φ, j = 1, ..., n,

hj + qj ≥ φ, j = 1, ..., n,

wi + ki ≥ φ, i = 1, ..., n,
n∑

i=1
wivip −

n∑
j=1

λj + ε
n∑

j=1
hj = 0,

λj , sj , hj , qj , wi, ki, φ ≥ 0. ∀i, j.

where P =


1 −1 0 ... 0
0 1 −1 ... 0
...

...
... −1

0 0 0 ... 1

 and v and q are slack vectors. The

model (2.3.3) corresponds to the evaluation of candidate p.
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2.3.4. Izadikhah and Saen[40]. Izadikhah and Farzipoor Saen [40] com-
bined the presented methods of [25] and [1] and present the following Model
(?) the evaluate the performance of candidate p.:

(2.3.4)

v∗p = max
∑k

j=1

∑T
t=1 ytjv

t
pj

s.t.


∑k

j=1

∑T
t=1 ytjv

t
ij ≤ 1, i = 1, ..., n,∑k

j=1 ytjPsj ≥ ε, s = 1, ..., k; t = 1, ..., T,∑T
t=1 ytjQrt ≥ ε, j = 1, ..., k; r = 1, ..., T.

where

P =


1 −2 0 ... 0
0 2 −3 ... 0
...

...
... −(k − 1)

0 0 0 ... 1


(k × k)

and

Q =


1 −2 0 ... 0
0 2 −3 ... 0
...

...
... −(T − 1)

0 0 0 ... 1


(T × T )

3. Enhanced Voting Models Based on CSW
Model (2.3.1) evaluates candidates by using different sets of weights, i.e.

one set for each DMU and this make the assessment unfair. So, we build a
new model that evaluate all DMUs against one common set of weights.

3.1. New Equivalence Model. For this purpose, we reformulate the Model
(2.3.1) as following Model (3.1.1).

(3.1.1)

δ∗p = Max γp

s.t.



k∑
j=1

wjvpj ≥ γp,

k∑
j=1

wjvij ≤ 1; i = 1, . . . , n,

wj − wj+1 ≥ ε; j = 1, . . . , k − 1,
wk ≥ ε.

Below theorem indicates a useful property of the Model (3.1.1).

Theorem 3.1. In optimality of Model (3.1.1) we have γ∗
p
=

k∑
j=1

w∗
j vpj .

Proof. By contrary, let’s assume that in optimality we have γ∗
p
<

k∑
j=1

w∗
j vpj ,

Clearly, if we define τp =

k∑
j=1

w∗
j
vpj−γ∗

p

2 then γ̇p = γ∗p + τp > γ∗p is a feasible
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solution that is better than the optimal solution. This contradiction proves
the theorem. □

The following theorem guarantees that both models (2.3.1) and (3.1.1)
are equal and can be used interchangeably.

Theorem 3.2. Models (2.3.1) and (3.1.1) are equal.

Proof. A simple calculation shows that the feasible region of Model (3.1.1)
is a subset of feasible region of Model (2.3.1). Let’s assume that the vector
(w∗, ∗p) is a feasible solution of Model (3.1.1). Hence, the vector w∗ is a
feasible solution for Model (2.3.1). Now, let’s consider the vector w̃ be
the optimal solution of Model (2.3.1). So, based on the above discussion,

we must have ∗
γp =

k∑
j=1

w∗
j vpj ≤

k∑
j=1

∼
wjvpj . In contrary let’s assume that

k∑
j=1

w∗
j vpj <

k∑
j=1

∼
wjvpj , Obviously, (w̃, ỹp) is a feasible solution for Model

(3.1.1), where ∼
γp =

∗
γp+

k∑
j=1

∼
wjvpj−

k∑
j=1

w∗
j vpj

2 >
∗
γp This contradiction proves

the theorem. □

3.2. Proposed Models based on CSW. The above-mentioned models
evaluate each candidate by a different set of weights. Thus, factor weights
are allowed to vary freely in each run of the model. However, decision maker
may not accept to allocate different weights to a factor. One possible way
to overcome this difficulty lies in the specification of a CSW.

3.2.1. Justification of the CSW-based Model. Hence, we develop the
following new multiple objective programming (MOP) model (3.2.1) for eval-
uating preference scores of all candidates by considering CSW.

(3.2.1)

Max{γ1, γ1, . . . , γn},

s.t.



k∑
j=1

wjvij ≥γi; i = 1, 2, . . . , n,

k∑
j=1

wjvij ≤ 1; i = 1, 2, . . . , n,

wj − wj+1 ≥ ϵ; j = 1, 2, . . . , k − 1,
wk ≥ ϵ;

The MOP Model (3.2.1) evaluates all n candidates simultaneously. Before
providing a suitable solution strategy, we note to the following interesting
property.

Theorem 3.3. After solving Model (3.2.1) we have γ∗
p
≤ δ∗p, ∀p.

Proof. Regarding the fact that the feasible region of Model (3.2.1) is a subset
of Model (2.3.4), the proof is obvious. □
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3.2.2. Calculating a suitable value for discriminating factor (ep-
silon). To increase the discrimination power of the proposed model, we
should set a suitable value for discriminating factor (epsilon). In order to
find such a convenient value for ϵ, [41, 42, 43], presented a mixed integer
non-linear programming model. We remove the non-linearity problem and
propose an enhanced version by proposing the following new mixed integer
linear programming (MILP) model:

(3.2.2)

ε∗ = Max ε

s.t.



k∑
j=1

wjvij + ξi = 1; i = 1, 2, . . . , n,

wj − wj+1 ≥ ε; j = 1, 2, . . . , k − 1,
wk ≥ ε
n∑

i=1
ηi = n− 1,

0 ≤ ξi ≤ ηi; i = 1, 2, . . . , n,
ξi ∈ {0, 1}; i = 1, 2, . . . , n.

The proposed model guarantees that in optimality we have 0 ≤ ξ∗i ≤ 1, (∀i).
This model calculates the optimal value of discriminating factor (epsilon) in
a way that the most discrimination power is achieved.

Theorem 3.4. Model (3.2.2) is always bounded, i.e. ε∗ < ∞.

Proof. From the first group of constraints of model (3.2.2), we have
k∑

j=1

wjvij ≤ 1, (∀i) ⇒ ∃M ; ∀j wj < M.

From the last two groups of constraints, we have ε∗ ≤ M < ∞ □

If we use the optimal value of the discriminating factor (epsilon) in model
(3.2.2), the following MOP model (8) is obtained:

(3.2.3)

Max{γ1, γ1, . . . , γn},

s.t.



k∑
j=1

wjvij ≥γi; i = 1, 2, . . . , n,

k∑
j=1

wjvij ≤ 1; i = 1, 2, . . . , n,

wj − wj+1 ≥ ε; j = 1, 2, . . . , k − 1,
wk ≥ ε∗;

Where ε∗ is optimal value of model (3.2.2). This model has the most
discrimination power among candidates and can present a complete ranking.

3.2.3. Solving Strategy. The proposed Model (8) is a multi-objective pro-
gramming model and there are various methods for converting it into the
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one-objective model. To solve the MOP Model (8), we consider two scenar-
ios that lead to two new models. To this end, we use compromise approach
and max-min methods.

Scenario 1: Compromise Approach
From the first two constraints of Model (8), we know the best value for

each γi is one. So, we can use the compromise solution approach to convert
it to one-objective model as follows:

min

(
n∑

i=1

(1− γi)
p

) 1
p

In which for p = 1, we reach into the following linear programming model
(3.2.3).

(3.2.4)

Min

(
n∑

i=1
(1− γi)

)

s.t.



k∑
j=1

wjvij ≥γi; i = 1, 2, . . . , n,

k∑
j=1

wjvij ≤ 1; i = 1, 2, . . . , n,

wj − wj+1 ≥ ε∗; j = 1, 2, . . . , k − 1,
wk ≥ ε∗;

Model (3.2.3) has only one objective function and can easily be solved. By
solving Model (3.2.3), the final score for each alternative can be obtained.

Scenario 2: Max-Min Approach
In the second scenario to solve MOP Model (8), we consider the max-min

method to maximize the minimum performances. Using this idea, model (8)
is converted into the following one-objective model.

(3.2.5)

Max a

s.t.



γi ≥ a; i = 1, 2, . . . , n,
k∑

j=1
wjvij ≥γi; i = 1, 2, . . . , n,

k∑
j=1

wjvij ≤ 1; i = 1, 2, . . . , n,

wj − wj+1 ≥ ε∗; j = 1, 2, . . . , k − 1,
wk ≥ ε∗;

Similarly, model (3.2.3) is also a programming model with only one objective
function and can easily be solved. By running model (3.2.3), the final score
for each alternative can be obtained.

4. Numerical comparison
Here, we analyze our proposed models through a numerical example. For

this purpose, we take dataset of [14] which involves seven candidates. 150
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voters evaluated these candidates and determined the first and second rank.
Votes are summarized in Table 1.

Candidates First rank Second rank
1 32 10
2 28 20
3 13 36
4 20 27
5 27 19
6 0 8
7 0 30

Table 1. Dataset of [14].

At the first stage, to find the maximum discriminating factor the proposed
Model (7) is solved. By solving this model, the value ϵ = 0.0020639835
as the maximum discriminating factor is obtained. At the next stage, we
take into account the proposed two scenarios. In this stage, the models
(3.2.3) and (3.2.3) are solved. The obtained results of the proposed models
alongside the candidates’ ranks are summarized in Table 2. Results of the

Candidates Scenario 1 Scenario 2
Score Rank Score Rank

1 1.0000000000 1 1.0000000000 1
2 0.9969040246 2 0.9969040305 2
3 0.7523219809 3 0.7523219858 3
4 0.8498452009 4 0.8498452061 4
5 0.9582043342 5 0.9582043399 5
6 0.9226006192 6 0.9226006245 6
7 0.3250773989 7 0.3250774013 7

Table 2. Results of the proposed method.

two scenarios are very close to each other and also they proposed similar
rankings. Additionally, the results show that, our proposed models can fully
rank candidates, and candidate 1 and 7 are the best and worst candidates,
respectively. In order to show the capabilities of the proposed models, we
compare our proposed model with other models proposed by [2], [14], [44],
Izadikhah and Farzipoor Saen[1], Ebrahimnejad et al. [25] and Izadikhah
and Saen [40]. The ranking results of these methods are shown in Table 3.
As is seen, Cook and Kress [2] method and Ebrahimnejad et al. [25] method
fail to provide a complete ranking. Jahanshahloo et al. [44] method provide
an unreasonable result for the first candidate.
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Candidate Cook [2] Obata [14] Jahanshahloo [44]
Ref. [1] Ref. [25] Ref. [40]

Score Rank Score Rank Score Rank

1 1 1 5 1 1 1 1 1 1
2 1 2 1 0.87421 3 1 1 0.99690 2
3 1 3 2 0.41074 6 0.815789 6 0.75232 6
4 4 4 3 0.62802 5 0.881579 5 0.84985 5
5 5 5 4 0.84567 4 0.961111 3 0.95820 3
6 6 6 6 0.93647 2 0.9375 4 0.92260 4
7 7 7 7 0 7 0.394737 7 0.32508 7

Table 3. Results of different models.

Using the obtained discriminating factor (ε = 0.0020639835) and given
Table 2, unique rankings are obtained which indicate high discrimination
powers of our proposed models.

5. Conclusion
The key role in social choice and voting systems is played by aggrega-

tion of preference orders. The methodologies for solving the voting systems
are usually based on determination of an aggregated value for each alter-
native. In this issue, how to determine the weights associated with rank
positions is an important subject since it will determine the final solution.
Many researches have been done to develop some procedures in which the
weights associated with the votes become variables in the model. Data en-
velopment analysis represents one class of such models and allows to each
DMU to measure its efficiency with the weights that are only most favorable
for itself. In the other words, for reaching the maximum efficiency of each
DMU, the most favorable weighting schemes are chosen. Thus, the efficien-
cies of different DMUs obtained by different sets of weights may be unable
to be compared and ranked on the same basis. Another problem is that
there are always more than one DMU to be evaluated as efficient because
of the flexibility in the selection of weights, which would cause the prob-
lem that all DMUs cannot be fully discriminated. In order to solve these
two problems this paper proposed a new variant of Cook and Kress model
with some interesting properties. The proposed model was further extended
to the multi-objective programming model to for generating common set of
weights. Then, a new model for estimating the maximum discriminating fac-
tor among candidates was developed. In order to solve the obtained MOLP
model, two scenarios with two linear one-objective models were presented.
Solving linear problems was another advantage of the proposed approach
against general approaches in the literature which are based on solving non-
linear problems. Compared to the original DEA-based voting model, this
approach discriminates in a better way among candidate’s in order to yield
the less efficient ones. As in the conventional model, it does not require
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the formulation of n models. In fact, the efficiencies of all candidates can
be calculated by solving a single model, enabling one to evaluate the rela-
tive efficiency of every candidate on a common weight basis. Considering
that the place of each candidate is of great importance from an economic
and managerial point of view, various organizations use voting systems and
their main objective is to rank candidates. The ranking approach in this
paper can be applied in various real-world settings, especially in the busi-
ness and managerial section. A numerical results not only indicated that
the proposed models provide complete ranking among candidates but also
validated the correctness of the provided theorems.
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