

Research Paper

ON THE BASIS PROPERTY OF AN TRIGONOMETRIC FUNCTIONS SYSTEM OF THE FRANKL PROBLEM WITH A NONLOCAL PARITY CONDITION IN THE SOBOLEV SPACE $\overline{W}_p^{2l}(0,\pi)$

NASER ABBASI* AND EVGENII IVANOVICH MOISEEV

ABSTRACT. In the present paper, we write out the eigenvalues and the corresponding eigenfunctions of the modified Frankl problem with a nonlocal parity condition of the first kind. We analyze the completeness, the basis property, and the minimality of the eigenfunctions in the space $\overline{W}_p^{2l}(0,\pi)$, where $\overline{W}_p^{2l}(0,\pi)$ be the set of functions $f \in W_p^{2l}(0,\pi)$, satisfying of the following conditions: $f^{(2k-1)}(0) = 0, k = 1, 2, ..., l$.

MSC(2010): 35J15; 46E35.

Keywords: Frankl problem, Lebesgue integral, Holder inequality, Bessel equation, Sobolev space.

1. Introduction

The classical Frankl problem was considered in [3]. The problem was further developed in [2, pp.339-345], [8, pp.235-252]. The modified Frankl problem with a nonlocal boundary condition of the first kind was studied in [1, 6]. The basis property of an eigenfunctine of the Frankl problem with a nonlocal parity conditions in the space Sobolev was studied in [7]. In the present paper, we write out the eigenvalues and the corresponding eigenfunctions of the modified Frankl problem with a nonlocal parity condition of the first kind. We analyze the completeness, the basis property, and the minimality of the eigenfunctions in the space $\overline{W}_n^{2l}(0,\pi)$. This analysis may be of interest in itself.

2. Statement of the modified Frankl problem

Definition 2.1. In the domain $D = (D_+ \cup D_{-1} \cup D_{-2})$, we seek a solution of the modified generalized Frankl problem

(2.1) $u_{xx} + \operatorname{sgn}(y)u_{yy} + \mu^2 \operatorname{sgn}(x+y)u = 0 \quad \text{in} \quad (D_+ \cup D_{-1} \cup D_{-2}),$

with the boundary conditions

(2.2)
$$u(1,\theta) = 0, \quad \theta \in [0,\frac{\pi}{2}],$$

(2.3)
$$\frac{\partial u}{\partial x}(0,y) = 0, \quad y \in (-1,0) \cup (0,1)$$

Date: Received: February 6, 2020, Accepted: March 31, 2020.

^{*}Corresponding author.

N. ABBASI AND E. I. MOISEEV

(2.4)
$$u(0,y) = u(0,-y), y \in [0,1].$$

where u(x, y) is a regular solution in the class

$$u \in C^0(\overline{D_+ \cup D_{-1} \cup D_{-2}}) \cap C^2(\overline{D_{-1}}) \cap C^2(\overline{D_{-2}}),$$

and where

(2.5)

$$D_{+} = \{(r,\theta) : 0 < r < 1, 0 < \theta < \frac{\pi}{2}\},$$

$$D_{-1} = \{(x,y) : -y < x < y + 1, \frac{-1}{2} < y < 0\},$$

$$D_{-2} = \{(x,y) : x - 1 < y < -x, 0 < x < \frac{1}{2}\},$$

$$\kappa \frac{\partial u}{\partial y}(x, +0) = \frac{\partial u}{\partial y}(x, -0), -\infty < \kappa < \infty, 0 < x < 1.$$

Theorem 2.2 ([5]). The eigenvalues and eigenfunctions of problem (1-5) can be written out in two series. In the first series, the eigenvalues $\lambda = \mu_{nk}^2$ are found from the equation

(2.6)
$$J_{4n}(\mu_{nk}) = 0$$

where μ_{nk} , n = 0, 1, 2, ..., k = 1, 2, ..., are roots of the Bessel equation (6), $J_{\alpha}(z)$ is the Bessel function [4], and the eigenfunctions are given by the formula

(2.7)
$$u_{nk} = \begin{cases} A_{nk}J_{4n}(\mu_{nk}r)\cos(4n)(\frac{\pi}{2}-\theta), & in & D^+; \\ A_{nk}J_{4n}(\mu_{nk}\rho)\cosh(4n)\psi, & in & D_{-1}; \\ A_{nk}J_{4n}(\mu_{nk}R)\cosh(4n)\varphi, & in & D_{-2}, \end{cases}$$

where $x = r \cos \theta$, $y = r \sin \theta$ for $0 \le \theta \le \frac{\pi}{2}$, 0 < r < 1, and $r^2 = x^2 + y^2$ in D_+ , $x = \rho \cosh \psi$, $y = \rho \sinh \psi$, for, $0 < \rho < 1$, $-\infty < \psi < 0$, $\rho^2 = x^2 - y^2$, in D_{-1} and $x = R \sinh \varphi$, $y = -R \cosh \varphi$, for, $0 < \varphi < +\infty$, $R^2 = y^2 - x^2$, in D_{-2} .

In the second series, the eigenvalues $\tilde{\lambda} = \tilde{\mu}_{nk}^2$ are found from the equation.

$$(2.8) J_{4(n-\triangle)}(\tilde{\mu}_{nk}) = 0.$$

Where $n = 1, 2, ..., and k = 1, 2, ..., and the (\tilde{\mu}_{nk})$ are the roots of the Bessel equation (8).

(2.9)
$$\tilde{u}_{nk} = \begin{cases} \tilde{A}_{nk} J_{4(n-\triangle)}(\tilde{\mu}_{nk}r) \cos 4(n-\triangle)(\frac{\pi}{2}-\theta), & in \quad D^+; \\ \tilde{A}_{nk} J_{4(n-\triangle)}(\tilde{\mu}_{nk}\rho) [\cosh 4(n-\triangle)\varphi \cos 4(n-\triangle)\frac{\pi}{2} \\ +\kappa \sinh 4(n-\triangle)\psi \cos 4(n-\triangle)], & in \quad D_{-1}; \\ \tilde{A}_{nk} J_{4(n-\triangle)}(\tilde{\mu}_{nk}R) \cosh 4(n-\triangle)\varphi [\cos 4(n-\triangle)\frac{\pi}{2} \\ -\kappa \sin 4(n-\triangle)\frac{\pi}{2}], & in \quad D_{-2}; \end{cases}$$

where, $\Delta = \frac{1}{\pi} \arcsin \frac{\kappa}{\sqrt{1+\kappa^2}}, \Delta \in (0, \frac{1}{2})$, and

$$A_{nk}^2 \int_0^1 J_{4n}^2(\mu_{nk}r)rdr = 1,$$

$$\tilde{A}_{nk}^2 \int_0^1 J_{4n-1}^2(\tilde{\mu}_{nk}r)rdr = 1,$$

 $A_{nk} > 0$ and $\tilde{A}_{nk} > 0$.

42

Theorem 2.3. The function system

(2.10)
$$\{\cos(4n)(\frac{\pi}{2}-\theta)\}_{n=0}^{\infty}, \{\cos 4(n-\Delta)(\frac{\pi}{2}-\theta)\}_{n=1}^{\infty}, \{\cos 4(n-\Delta)(\frac{\pi}{2}-\theta)\}_{n=1}$$

is a Riesz basis in $L_2(0, \frac{\pi}{2})$, provided that $\Delta \in (0, \frac{3}{4})$.

Proof. Let us show that any function $f(\theta) \in L_2(0, \frac{\pi}{2})$ can be represented in the form

(2.11)
$$f(\theta) = \sum_{n=0}^{\infty} A_n \cos 4n(\frac{\pi}{2} - \theta) + \sum_{n=1}^{\infty} B_n \cos 4(n - \Delta)(\frac{\pi}{2} - \theta),$$

in $L_2(0, \frac{\pi}{4})$. We have

(2.12)
$$f(\theta) - f(\frac{\pi}{2} - \theta) = \sum_{n=1}^{\infty} B_n [\cos 4(n - \Delta)(\frac{\pi}{2} - \theta) - \cos 4(n - \Delta)\theta]$$
$$= -2\sin \pi \Delta \sum_{n=1}^{\infty} (-1)^n B_n \sin 4(n - \Delta)(\frac{\pi}{2} - \theta).$$

The function system $\{\sin 4(n-\Delta)(\frac{\pi}{4}-\theta)\}_{n=1}^{\infty}$ is a Riesz basis in $L_2(0,\frac{\pi}{4})$ for $\Delta \in (0,\frac{3}{4})$ (see [5]). Therefore,

(2.13)
$$\sum_{n=1}^{\infty} B_n^2 \le b_1 \| f(\theta) - f(\frac{\pi}{2} - \theta) \|_{L_2(0, \frac{\pi}{2})}^2 \le 2b_1 \| f \|_{L_2(0, \frac{\pi}{4})}^2.$$

And according to the results of [7], we have the estimate

(2.14)
$$\sum_{n=0}^{\infty} A_n^2 + \sum_{n=1}^{\infty} B_n^2 \le b_2 \|f\|_{L_2(0,\frac{\pi}{2})}^2.$$

By squaring relation (11) and by integrating the resulting relation over the interval $[0, \frac{\pi}{2}]$, we obtain

(2.15)
$$\int_{0}^{\frac{\pi}{2}} f^{2}(\theta) d\theta \leq 2 \int_{0}^{\frac{\pi}{2}} (\sum_{n=0}^{\infty} A_{n} \cos 4n(\frac{\pi}{2} - \theta))^{2} d\theta + 2 \int_{0}^{\frac{\pi}{2}} F^{2}(\theta) d\theta$$
$$\leq c_{3} (\sum_{n=0}^{\infty} A_{n}^{2} + \sum_{n=1}^{\infty} B_{n}^{2}).$$

From inequalities (14) and (15), we obtain the estimate

(2.16)
$$a\|f\|_{L_2(0,\frac{\pi}{2})}^2 \le \sum_{n=0}^{\infty} A_n^2 + \sum_{n=1}^{\infty} B_n^2 \le b_3 \|f\|_{L_2(0,\frac{\pi}{2})}^2.$$

The proof of the theorem is complete.

3. The completeness, the basis property and minimality of the eigenfunctions

Definition 3.1. Let $\beta < 2 - \frac{1}{p}$. Let $\widetilde{W}_p^{2l}(0,\pi)$ be the subspace of the space $W_p^{2l}(0,\pi)$ consisting of functions $f \in W_p^{2l}(0,\pi)$ satisfying the following boundary conditions:

(3.1)
$$f^{2k}(0) = 0, \qquad (k = 0, 1, ..., l - 1)$$

and, for $\beta < 1$, let them satisfy condition:

$$\int_0^{\pi} f^{(2k-1)(\theta)} \widetilde{H}_0^{\beta} d\theta = 0, \qquad (k = 1, 2, 3, ..., l)$$

where

$$\widetilde{H}_0^{\alpha} = \frac{\Gamma^2(1-\frac{\alpha}{2})}{\Gamma(1-\alpha)\pi(2\cos\frac{\theta}{2})^{\alpha}}.\qquad (\alpha=\beta-2)$$

This restriction on β is connected with applied problems and is natural in this sense.

Definition 3.2. Let $\beta < 2 - \frac{1}{p}$, and let $(\overline{W}_p^{2l}(0,\pi))$ be the set of functions $f \in W_p^{2l}(0,\pi)$ satisfying the following conditions:

$$f^{2k-1}(0) = 0,$$
 $(k = 1, ..., l)$

and, also the following conditions depending on the parameter β : For $\beta < 1$,

(3.2)
$$\int_0^{\pi} f^{(2k)}(\theta) \widetilde{H}_0^{\beta} d\theta = 0, \qquad (k = 1, 2, 3, ..., l - 1)$$

and for $\beta \geq 1$,

(3.3)
$$\int_0^{\pi} \left(f^{(2k)} - \frac{f^{2l}(-1)^{l-k}}{(1-\frac{\beta}{2})^{2l-2k}} \right) H_0^{\beta-2} d\theta = 0, \qquad (k = 1, 2, 3, ..., l-1)$$
$$H_n^{\alpha} = \frac{2}{\pi (2\cos\frac{\theta}{2})^{\alpha}} \left\{ \sum_{k=0}^n C_{\alpha}^k \cos(n-k)\theta - \frac{C_{\alpha}^n}{2} \right\} \qquad (n \ge 0)$$

and

$$h_n^{\beta} = \frac{2}{\pi (2\cos\frac{\theta}{2})^{\beta}} \sum_{k=0}^{n-1} C_{\beta}^k \sin(n-k)\theta.$$

Remark 3.3. For $\beta = 1$, condition (8) transforms to the condition $f^{2k-2}(\pi) = 0, k = 2, 3, ..., l$ and for l = 1 conditions (7) and (8) do not occur.

Theorem 3.4. The system of function $\{\cos(n-\frac{\beta}{2})\theta\}_{n=0}^{\infty}$ is a Riesz basis in $(W_p^1(0,\pi))$ if and only if $\beta \in (-\frac{1}{p}, 2-\frac{1}{p}), \beta \neq 1$.

Proof. Using the formula (20) of [7], we have the relation

(3.4)
$$f(\theta) = \sum_{n=1}^{\infty} B_n \cos(n - \frac{\beta}{2})\theta + B_0.$$

where

(3.5)
$$B_n = -\int_0^{\pi} f'(\theta) h_n^{\beta} d\theta (n - \frac{\beta}{2})^{-1}. \qquad (n = 1, 2, ...)$$

The coefficient B_0 , depend on the B_n (see [7]). Consider the formally differentiated series (20):

(3.6)
$$\sum_{n=1}^{\infty} B_n (n - \frac{\beta}{2}) \sin(n - \frac{\beta}{2}) \theta.$$

Since the coefficient B_n , are found by formula (21), using the results of [5], we obtain that Series (20) converges to $f'(\theta)$ in the space $L_p(0,\pi)$. Integrating Series (20) from 0 to θ , we obtain the relation

(3.7)
$$f(\theta) - f(0) = \sum_{n=1}^{\infty} B_n \cos(n - \frac{\beta}{2})\theta - \sum_{n=1}^{\infty} B_n$$

Which has a meaning if the following Series converges

(3.8)
$$\sum_{n=1}^{\infty} B_n.$$

By using the results of [7], we obtain that the numerical series (24) converges and the relation (23) uniformly converges on $[0, \pi]$, and therefore, it converges in the space $L_p(0, \pi)$. Now we assume that

$$B_0 = f(0) - \sum_{n=1}^{\infty} B_n.$$

Then expression (23) coincides with expression (20), and therefore, series (20) converges to function in the space $(W_p^1(0,\pi))$.

Now let us show that the coefficients B_n are uniquely found by using relation (20). Indeed, if series (20) converges in the space $(W_p^1(0,\pi))$, then series (24) converges in the space $L_p(0,\pi)$ (see [7]), this implies that $\lim_{n\to\infty} B_n = 0$. For $\beta \in (-\frac{1}{p}, 2 - \frac{1}{p})$. Now let us show that the system $\{\cos(n-\frac{\beta}{2})\theta,1\}_{n=1}^{\infty}$, does not composes a basis for $\beta \notin (-\frac{1}{p}, 2-\frac{1}{p})$. If $\beta \in (2-\frac{1}{p}, 4-\frac{1}{p})$ then, using the substitution $\beta - 2 = \beta'$ and removing the first cosine, we obtain the cosine system $\{\cos(n-\frac{\beta'}{2})\theta_{n=1}^{\infty},1\}$, which as was proved above, composes a basis in $(W_p^1(0,\pi))$, and therefore, the initial cosine system is not minimal in $(W_p^1(0,\pi))$. Analogously, for $\beta \in (-2-\frac{1}{p},-\frac{1}{p})$, the substitution $\beta+2=\beta'$, reduces the initial cosine system to the system with $\beta' \in (-\frac{1}{p},2-\frac{1}{p})$ in which there is no function $(\cos(1-\frac{\beta'}{2})\theta)$, and, therefore the initial cosine system is not complete. Other ranges of the parameter $\beta \in (-\frac{1}{p}+2k,2-\frac{1}{p}+2k), k=\pm 1,\pm 2,\ldots$ can be considered analogously. Furthermore, for $\beta = 2 - \frac{1}{p}$ in the space $(W_p^1(0,\pi))$, where $\hat{p} > p$, we have, $-\frac{1}{\hat{p}} < \beta < 2 - \frac{1}{\hat{p}}$, and therefore, the cosine system composes a basis in $W_p^1(0,\pi)$.

For $\beta = -\frac{1}{p}$, the cosine system is minimal, since as was proved above, the coefficients B_n are found by concrete formulas in the form of an integral. Let us show that for $\beta = 2 - \frac{1}{p}$, the cosine system is not minimal. By using the results of [5], we obtain that for $\beta = 2 - \frac{1}{p}$, the cosine system is complete but not minimal, and hence, for $\beta = -\frac{1}{p}$, the cosine system is complete (since it is minimal in this case). Now let us prove that for $\beta = -\frac{1}{p}$, the cosine system does not composes a basis. Let $f(\theta) = \theta$, then $f(\theta) \in (W_p^1(0,\pi)), f'(\theta) = 1$, and the coefficients B_n can be calculated by using the formula (21) exactly in the same way as in [5], where it was shown that a series converges to a function not belonging to $L_p(0,\pi)$, thus Theorem 3.4 is proved.

Theorem 3.5. Let $p \in (1, \infty), \beta \neq 2$. then the cosine system composes a basis in the space $(\overline{W}_p^{2l}(0,\pi))$, if and only if $\beta \in (\frac{-1}{p}, 2 - \frac{1}{p})$, and the expansion of a function $f \in (\overline{W}_p^{2l}(0,\pi))$

into the series has the form

(3.9)
$$f(\theta) = \sum_{n=1}^{\infty} \widetilde{B}_n \cos(n - \frac{\beta}{2})\theta + \widetilde{B}_0,$$

where

(3.10)
$$\widetilde{B}_n = \int_0^{\pi} f^{(2l)}(\theta) H_{n-1}^{\beta-2}(\theta) d\theta (n-\frac{\beta}{2})^{-2l} (-1)^l, \qquad (n=1,2,3,...)$$

and

$$\widetilde{B}_0 = \int_0^{\pi} f(\theta) H_0^{\beta} d\theta, \quad \text{for,} \quad \beta < 1,$$

$$\widetilde{B}_0 = \int_0^{\pi} \left(f - \frac{f^{2l} (-1)^l}{(1 - \frac{\beta}{2})^{2l}} \right) H_0^{\beta - 2} d\theta, \quad \text{for,} \quad \beta \ge 1$$

Proof. Let $(\beta \neq 2)$. We first prove the basis properties of the cosine system for $\beta \in (\frac{-1}{p}, 2-\frac{1}{p})$. Let $f \in ((\overline{W}_p^{2l}(0,\pi)))$. The inequality $\beta < 2 - \frac{1}{p}$ guarantees the existence of integrals (17) and (18). The function $f^{(2l)}$ belongs to the class $L_p(0,\pi)$. Therefore, according to the results of [5], it is possible to write the expansion of the function $f^{(2l)}$ into the following series in cosines:

(3.11)
$$f^{(2l)}(\theta) = \sum_{n=0}^{\infty} (n - \frac{\beta}{2})^{2l} (-1)^l \cos(n - \frac{\beta}{2}) \theta.$$

Sinces (27) converges in the space $L_p(0,\pi)$ to the function $f^{(2l)}$ for $\beta \in (\frac{-1}{p}, 2-\frac{1}{p})$. Integrating series (27) from 0 to θ and using (17) for k=l, we obtain that the following series uniformly converges:

(3.12)
$$f^{(2l)}(\theta) = \sum_{n=0}^{\infty} \widetilde{B}_n (n - \frac{\beta}{2})^{2l} (-1)^l \sin(n - \frac{\beta}{2}) \theta.$$

Now integrating the obtained series from π to θ , we have

(3.13)
$$f^{(2l-1)}(\theta) = \sum_{n=1}^{\infty} \widetilde{B}_n (n - \frac{\beta}{2})^{2l-1} (-1)^{l-1} \cos(n - \frac{\beta}{2}) \theta - \sum_{n=1}^{\infty} \widetilde{B}_n (n - \frac{\beta}{2})^{2l-1} (-1)^{l-1} \cos(n - \frac{\beta}{2}) \pi + f^{(2l-1)}(\pi)$$

According to Corollary 2 of [5]. We have

$$|| H_{n-1}^{\beta-2} || \le c, \qquad (n \ge 1, \frac{1}{q} + \frac{1}{p} = 1),$$

therefore, applying (26) and the Holder inequality, we have $| \tilde{B}_n (n - \frac{\beta}{2})^{2L+1} | \leq || f^{2L} ||_{L^p} || H_{n-1}^{\beta-2} ||_{L_q} \leq \text{const}, n \geq 1.$ The obtained estimates immediately imply that the numerical series in converges there-

fore, the functional series in (29) also converges. Now, let $\beta < 1$. Multiplying (29) by $\widetilde{H}_0^{\beta}(\theta)$,

integrating the obtained relation in the limits from 0 to π , and by using the results of [9], we obtain

(3.14)
$$f^{(2l-1)}(\theta) = \sum_{n=1}^{\infty} \widetilde{B}_n (n - \frac{\beta}{2})^{2l-1} (-1)^{l-1} \cos(n - \frac{\beta}{2}) \theta.$$

Now, let $\beta \geq 1$. In this case, we multiply series (29) by $\widetilde{H}_0^{\beta-2}(\theta)$, integrate from 0 to π , we immediately obtain the required relation (29). Analogously it is proved that if we differentiate series (20) k times, where k = 0, 1, 2, ..., 2l - 1, then the obtained series uniformly converges to $f^{(k)}(\theta)$ on $[0, \pi]$. Therefore, the cosine system composes a basis in the space $(\overline{W}_p^{2l}(0, \pi))$ for $\beta \in (\frac{-1}{p}, 2 - \frac{1}{p})$. For $\beta < (\frac{-1}{p})$, the cosine system is not complete in $L_p(0, \pi)$, according to [5]. Therefore, series (28), cannot approximate an arbitrary function $f^{(2l)}(\theta) \in L_p(0,\pi)$. Hence for $\beta < (1 - \frac{1}{p})$, the cosine system is not complete in the space $(\overline{W}_p^{2l}(0,\pi))$. For $\beta = (1 - \frac{1}{p})$, the cosine system is not complete in the space $(\overline{W}_p^{2l}(0,\pi))$.

For p = 2, the cosine system composes a Riesz basis. the proof of Theorem 3.5 is complete.

Remark 3.6. Let $\Delta \in (-\infty, +\infty)$ the system of function (10) a Riesz basis in $(\overline{W}_p^{2l}(0, \pi))$, if and only if $\Delta \in (\frac{-1}{4}, 0) \cup (0, \frac{3}{4})$.

If $\Delta \geq \frac{3}{4}, \Delta \neq 1, 2, 3, ...$, then system (10) is complete but is not minimal in $(\overline{W}_p^{2l}(0, \pi))$. If $\Delta = \frac{-1}{4}$, then system (10) is complete and minimal but is not basis in $(\overline{W}_p^{2l}(0, \pi))$.

If $\triangle < \frac{-1}{4}, \triangle \neq 1, 2, 3, ...$, then system (10) is not complete but is minimal and Riesz basis in $(\overline{W}_{p}^{2l}(0,\pi))$.

Proof. The proof of Remark 3.6 reproduces that of Theorem 2.3 and Theorem 3.5. \Box

References

- Abbasi, N, Basis property and completeness of the eigenfunctions of the Frankl problem, (Russian) Dokl. Akad. Nauk, 425(3): 295-298, 2009, translation in Dokl. Math., 79(2), 2009: 193–196.
- Bitsadze, A. V. Nekotorye klassy uravneniĭ v chastnykh proizvodnykh, (Russian) [Some classes of partial differential equations] "Nauka", Moscow, 448 pp., 1981.
- Frankl, F., On the problems of Chaplygin for mixed sub- and supersonic flows. (Russian) Bull. Acad. Sci. URSS. Sér. Math., [Izvestia Akad. Nauk SSSR] 9: 121–143, 1945.
- Van Haeringen, H., Kok, L. P., Table errata: Higher transcendental functions, Vol. II [McGraw-Hill, New York, 1953; MR 15, 419] by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi. Math. Comp. 41, 1983.
- 5. Moiseev, E. I., The basis property for systems of sines and cosines, (Russian) Dokl. Akad. Nauk SSSR 275(4): 794–798, 1984.
- Moiseev, E. I., Abbasi, N., The basis property of the eigenfunctions of a generalized gas-dynamic problem of Frankl with a nonlocal parity condition and a discontinuity in the solution gradient. (Russian) *Differ. Uravn.*, 45(10): 1452–1456, 2009, translation in *Differ. Equ.*, 45(10): 1485–1490, 2009.
- 7. Moiseev, E. I., Abbasi, N., The basis property of an eigenfunction of the Frankl problem with a nonlocal parity condition in the Sobolev space $W_p^1(0,\pi)$, Integral Transforms Spec. Funct. **22**(6): 415–421, 2011.
- Smirnov, M. M., Uravneniya smeshannogo tipa., (Russian) [Equations of mixed type] *Izdat. Nauka*, Moscow 295 pp., 1970.
- 9. Zygmund, Antoni, Trigonometrical series, Dover Publications, New York, 1955.

N. ABBASI AND E. I. MOISEEV

(Naser Abbasi) Department of Mathematics, Lorestan University, Khorramabad, Iran. $\mathit{Email}\ address:\ \texttt{abasi.nQlu.ac.ir}$

(Evgenii Ivanovich Moiseev) MOSCOW STATE UNIVERSITY, 119992, Russi
A $\mathit{Email}\ address: \texttt{eimoiseev@rambler.ru}$

48