ON THE BASIS PROPERTY OF AN TRIGONOMETRIC FUNCTIONS SYSTEM OF THE FRANKL PROBLEM WITH A NONLOCAL PARITY CONDITION IN THE SOBOLEV SPACE $\bar{W}_{p}^{2 l}(0, \pi)$

NASER ABBASI* AND EVGENII IVANOVICH MOISEEV

Abstract

In the present paper, we write out the eigenvalues and the corresponding eigenfunctions of the modified Frankl problem with a nonlocal parity condition of the first kind. We analyze the completeness, the basis property, and the minimality of the eigenfunctions in the space $\bar{W}_{p}^{2 l}(0, \pi)$, where $\bar{W}_{p}^{2 l}(0, \pi)$ be the set of functions $f \in W_{p}^{2 l}(0, \pi)$, satisfying of the following conditions: $f^{(2 k-1)}(0)=0, k=1,2, \ldots, l$.

MSC(2010): 35J15; 46E35.
Keywords: Frankl problem, Lebesgue integral, Holder inequality, Bessel equation, Sobolev space.

1. Introduction

The classical Frankl problem was considered in [3]. The problem was further developed in [2, pp.339-345], [8, pp.235-252]. The modified Frankl problem with a nonlocal boundary condition of the first kind was studied in [1, 6]. The basis property of an eigenfunctins of the Frankl problem with a nonlocal parity conditions in the space Sobolev was studied in [7]. In the present paper, we write out the eigenvalues and the corresponding eigenfunctions of the modified Frankl problem with a nonlocal parity condition of the first kind. We analyze the completeness, the basis property, and the minimality of the eigenfunctions in the space $\bar{W}_{p}^{2 l}(0, \pi)$. This analysis may be of interest in itself.

2. Statement of the modified Frankl problem

Definition 2.1. In the domain $D=\left(D_{+} \cup D_{-1} \cup D_{-2}\right)$, we seek a solution of the modified generalized Frankl problem

$$
\begin{equation*}
u_{x x}+\operatorname{sgn}(y) u_{y y}+\mu^{2} \operatorname{sgn}(x+y) u=0 \quad \text { in } \quad\left(D_{+} \cup D_{-1} \cup D_{-2}\right), \tag{2.1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{gather*}
u(1, \theta)=0, \quad \theta \in\left[0, \frac{\pi}{2}\right] \tag{2.2}\\
\frac{\partial u}{\partial x}(0, y)=0, \quad y \in(-1,0) \cup(0,1) \tag{2.3}
\end{gather*}
$$

[^0]\[

$$
\begin{equation*}
u(0, y)=u(0,-y), y \in[0,1] . \tag{2.4}
\end{equation*}
$$

\]

where $u(x, y)$ is a regular solution in the class

$$
u \in C^{0}\left(\overline{D_{+} \cup D_{-1} \cup D_{-2}}\right) \cap C^{2}\left(\overline{D_{-1}}\right) \cap C^{2}\left(\overline{D_{-2}}\right),
$$

and where

$$
\begin{align*}
& D_{+}=\left\{(r, \theta): 0<r<1,0<\theta<\frac{\pi}{2}\right\} \\
& D_{-1}=\left\{(x, y):-y<x<y+1, \frac{-1}{2}<y<0\right\}, \\
& D_{-2}=\left\{(x, y): x-1<y<-x, 0<x<\frac{1}{2}\right\} \\
& \kappa \frac{\partial u}{\partial y}(x,+0)=\frac{\partial u}{\partial y}(x,-0),-\infty<\kappa<\infty, 0<x<1 . \tag{2.5}
\end{align*}
$$

Theorem 2.2 ([5]). The eigenvalues and eigenfunctions of problem (1-5) can be written out in two series. In the first series, the eigenvalues $\lambda=\mu_{n k}^{2}$ are found from the equation

$$
\begin{equation*}
J_{4 n}\left(\mu_{n k}\right)=0, \tag{2.6}
\end{equation*}
$$

where $\mu_{n k}, n=0,1,2, \ldots, k=1,2, \ldots$, are roots of the Bessel equation (6), $J_{\alpha}(z)$ is the Bessel function [4], and the eigenfunctions are given by the formula

$$
u_{n k}=\left\{\begin{array}{lll}
A_{n k} J_{4 n}\left(\mu_{n k} r\right) \cos (4 n)\left(\frac{\pi}{2}-\theta\right), & \text { in } & D^{+} ; \tag{2.7}\\
A_{n k} J_{4 n}\left(\mu_{n k} \rho\right) \cosh (4 n) \psi, & \text { in } & D_{-1} ; \\
A_{n k} J_{4 n}\left(\mu_{n k} R\right) \cosh (4 n) \varphi, & \text { in } & D_{-2},
\end{array}\right.
$$

where $x=r \cos \theta, y=r \sin \theta$ for $0 \leq \theta \leq \frac{\pi}{2}, 0<r<1$, and $r^{2}=x^{2}+y^{2}$ in $D_{+}, x=$ $\rho \cosh \psi, y=\rho \sinh \psi$, for $, 0<\rho<1,-\infty<\psi<0, \rho^{2}=x^{2}-y^{2}$, in D_{-1} and $x=R \sinh \varphi, y=$ $-R \cosh \varphi$, for, $0<\varphi<+\infty, R^{2}=y^{2}-x^{2}$, in D_{-2}.

In the second series, the eigenvalues $\tilde{\lambda}=\tilde{\mu}_{n k}^{2}$ are found from the equation.

$$
\begin{equation*}
J_{4(n-\Delta)}\left(\tilde{\mu}_{n k}\right)=0 \tag{2.8}
\end{equation*}
$$

Where $n=1,2, \ldots$, and $k=1,2, \ldots$, and the $\left(\tilde{\mu}_{n k}\right)$ are the roots of the Bessel equation (8).

$$
\tilde{u}_{n k}=\left\{\begin{array}{llc}
\tilde{A}_{n k} J_{4(n-\Delta)}\left(\tilde{\mu}_{n k} r\right) \cos 4(n-\triangle)\left(\frac{\pi}{2}-\theta\right), & \text { in } & D^{+} ; \tag{2.9}\\
\tilde{A}_{n k} J_{4(n-\triangle)}\left(\tilde{\mu}_{n k} \rho\right)\left[\cosh 4(n-\triangle) \varphi \cos 4(n-\triangle) \frac{\pi}{2}\right. & & \\
+\kappa \sinh 4(n-\triangle) \psi \cos 4(n-\triangle)], & \text { in } & D_{-1} ; \\
\tilde{A}_{n k} J_{4(n-\triangle)}\left(\tilde{\mu}_{n k} R\right) \cosh 4(n-\triangle) \varphi\left[\cos 4(n-\triangle) \frac{\pi}{2}\right. & & \\
\left.-\kappa \sin 4(n-\triangle) \frac{\pi}{2}\right], & \text { in } & D_{-2},
\end{array}\right.
$$

where, $\Delta=\frac{1}{\pi} \arcsin \frac{\kappa}{\sqrt{1+\kappa^{2}}}, \Delta \in\left(0, \frac{1}{2}\right)$, and

$$
\begin{gathered}
A_{n k}^{2} \int_{0}^{1} J_{4 n}^{2}\left(\mu_{n k} r\right) r d r=1, \\
\tilde{A}_{n k}^{2} \int_{0}^{1} J_{4 n-1}^{2}\left(\tilde{\mu}_{n k} r\right) r d r=1,
\end{gathered}
$$

$A_{n k}>0$ and $\tilde{A}_{n k}>0$.

Theorem 2.3. The function system

$$
\begin{equation*}
\left\{\cos (4 n)\left(\frac{\pi}{2}-\theta\right)\right\}_{n=0}^{\infty},\left\{\cos 4(n-\triangle)\left(\frac{\pi}{2}-\theta\right)\right\}_{n=1}^{\infty} \tag{2.10}
\end{equation*}
$$

is a Riesz basis in $L_{2}\left(0, \frac{\pi}{2}\right)$, provided that $\triangle \in\left(0, \frac{3}{4}\right)$.
Proof. Let us show that any function $f(\theta) \in L_{2}\left(0, \frac{\pi}{2}\right)$ can be represented in the form

$$
\begin{equation*}
f(\theta)=\sum_{n=0}^{\infty} A_{n} \cos 4 n\left(\frac{\pi}{2}-\theta\right)+\sum_{n=1}^{\infty} B_{n} \cos 4(n-\triangle)\left(\frac{\pi}{2}-\theta\right), \tag{2.11}
\end{equation*}
$$

in $L_{2}\left(0, \frac{\pi}{4}\right)$. We have

$$
\begin{align*}
f(\theta)-f\left(\frac{\pi}{2}-\theta\right) & =\sum_{n=1}^{\infty} B_{n}\left[\cos 4(n-\triangle)\left(\frac{\pi}{2}-\theta\right)-\cos 4(n-\triangle) \theta\right] \tag{2.12}\\
& =-2 \sin \pi \Delta \sum_{n=1}^{\infty}(-1)^{n} B_{n} \sin 4(n-\triangle)\left(\frac{\pi}{2}-\theta\right)
\end{align*}
$$

The function system $\left\{\sin 4(n-\triangle)\left(\frac{\pi}{4}-\theta\right)\right\}_{n=1}^{\infty}$ is a Riesz basis in $L_{2}\left(0, \frac{\pi}{4}\right)$ for $\Delta \in\left(0, \frac{3}{4}\right)$ (see [5]). Therefore,

$$
\begin{equation*}
\sum_{n=1}^{\infty} B_{n}^{2} \leq b_{1}\left\|f(\theta)-f\left(\frac{\pi}{2}-\theta\right)\right\|_{L_{2}\left(0, \frac{\pi}{2}\right)}^{2} \leq 2 b_{1}\|f\|_{L_{2}\left(0, \frac{\pi}{4}\right)}^{2} \tag{2.13}
\end{equation*}
$$

And according to the results of [7], we have the estimate

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n}^{2}+\sum_{n=1}^{\infty} B_{n}^{2} \leq b_{2}\|f\|_{L_{2}\left(0, \frac{\pi}{2}\right)}^{2} \tag{2.14}
\end{equation*}
$$

By squaring relation (11) and by integrating the resulting relation over the interval $\left[0, \frac{\pi}{2}\right]$, we obtain

$$
\begin{align*}
\int_{0}^{\frac{\pi}{2}} f^{2}(\theta) d \theta & \leq 2 \int_{0}^{\frac{\pi}{2}}\left(\sum_{n=0}^{\infty} A_{n} \cos 4 n\left(\frac{\pi}{2}-\theta\right)\right)^{2} d \theta+2 \int_{0}^{\frac{\pi}{2}} F^{2}(\theta) d \theta \tag{2.15}\\
& \leq c_{3}\left(\sum_{n=0}^{\infty} A_{n}^{2}+\sum_{n=1}^{\infty} B_{n}^{2}\right)
\end{align*}
$$

From inequalities (14) and (15), we obtain the estimate

$$
\begin{equation*}
a\|f\|_{L_{2}\left(0, \frac{\pi}{2}\right)}^{2} \leq \sum_{n=0}^{\infty} A_{n}^{2}+\sum_{n=1}^{\infty} B_{n}^{2} \leq b_{3}\|f\|_{L_{2}\left(0, \frac{\pi}{2}\right)}^{2} . \tag{2.16}
\end{equation*}
$$

The proof of the theorem is complete.

3. The completeness, the basis property and minimality of the eigenfunctions

Definition 3.1. Let $\beta<2-\frac{1}{p}$. Let $\widetilde{W}_{p}^{2 l}(0, \pi)$ be the subspace of the space $W_{p}^{2 l}(0, \pi)$ consisting of functions $f \in W_{p}^{2 l}(0, \pi)$ satisfying the following boundary conditions:

$$
\begin{equation*}
f^{2 k}(0)=0, \quad(k=0,1, \ldots, l-1) \tag{3.1}
\end{equation*}
$$

and, for $\beta<1$, let them satisfy condition:

$$
\int_{0}^{\pi} f^{(2 k-1)(\theta)} \widetilde{H}_{0}^{\beta} d \theta=0, \quad(k=1,2,3, \ldots, l)
$$

where

$$
\widetilde{H}_{0}^{\alpha}=\frac{\Gamma^{2}\left(1-\frac{\alpha}{2}\right)}{\Gamma(1-\alpha) \pi\left(2 \cos \frac{\theta}{2}\right)^{\alpha}} . \quad(\alpha=\beta-2)
$$

This restriction on β is connected with applied problems and is natural in this sense.
Definition 3.2. Let $\beta<2-\frac{1}{p}$, and let $\left(\bar{W}_{p}^{2 l}(0, \pi)\right)$ be the set of functions $f \in W_{p}^{2 l}(0, \pi)$ satisfying the following conditions:

$$
f^{2 k-1}(0)=0, \quad(k=1, \ldots, l)
$$

and, also the following conditions depending on the parameter β : For $\beta<1$,

$$
\begin{equation*}
\int_{0}^{\pi} f^{(2 k)}(\theta) \widetilde{H}_{0}^{\beta} d \theta=0, \quad(k=1,2,3, \ldots, l-1) \tag{3.2}
\end{equation*}
$$

and for $\beta \geq 1$,

$$
\begin{gather*}
\int_{0}^{\pi}\left(f^{(2 k)}-\frac{f^{2 l}(-1)^{l-k}}{\left(1-\frac{\beta}{2}\right)^{2 l-2 k}}\right) H_{0}^{\beta-2} d \theta=0, \quad(k=1,2,3, \ldots, l-1) \tag{3.3}\\
H_{n}^{\alpha}=\frac{2}{\pi\left(2 \cos \frac{\theta}{2}\right)^{\alpha}}\left\{\sum_{k=0}^{n} C_{\alpha}^{k} \cos (n-k) \theta-\frac{C_{\alpha}^{n}}{2}\right\} \quad(n \geq 0)
\end{gather*}
$$

and

$$
h_{n}^{\beta}=\frac{2}{\pi\left(2 \cos \frac{\theta}{2}\right)^{\beta}} \sum_{k=0}^{n-1} C_{\beta}^{k} \sin (n-k) \theta .
$$

Remark 3.3. For $\beta=1$, condition (8) transforms to the condition $f^{2 k-2}(\pi)=0, k=2,3, \ldots, l$ and for $l=1$ conditions (7) and (8) do not occur.
Theorem 3.4. The system of function $\left\{\cos \left(n-\frac{\beta}{2}\right) \theta\right\}_{n=0}^{\infty}$ is a Riesz basis in $\left(W_{p}^{1}(0, \pi)\right)$ if and only if $\beta \in\left(-\frac{1}{p}, 2-\frac{1}{p}\right), \beta \neq 1$.

Proof. Using the formula (20) of [7], we have the relation

$$
\begin{equation*}
f(\theta)=\sum_{n=1}^{\infty} B_{n} \cos \left(n-\frac{\beta}{2}\right) \theta+B_{0} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{n}=-\int_{0}^{\pi} f^{\prime}(\theta) h_{n}^{\beta} d \theta\left(n-\frac{\beta}{2}\right)^{-1} . \quad(n=1,2, \ldots) \tag{3.5}
\end{equation*}
$$

The coefficient B_{0}, depend on the B_{n} (see [7]). Consider the formally differentiated series (20):

$$
\begin{equation*}
\sum_{n=1}^{\infty} B_{n}\left(n-\frac{\beta}{2}\right) \sin \left(n-\frac{\beta}{2}\right) \theta \tag{3.6}
\end{equation*}
$$

Since the coefficient B_{n}, are found by formula (21), using the results of [5], we obtain that Series (20) converges to $f^{\prime}(\theta)$ in the space $L_{p}(0, \pi)$. Integrating Series (20) from 0 to θ, we obtain the relation

$$
\begin{equation*}
f(\theta)-f(0)=\sum_{n=1}^{\infty} B_{n} \cos \left(n-\frac{\beta}{2}\right) \theta-\sum_{n=1}^{\infty} B_{n} \tag{3.7}
\end{equation*}
$$

Which has a meaning if the following Series converges

$$
\begin{equation*}
\sum_{n=1}^{\infty} B_{n} \tag{3.8}
\end{equation*}
$$

By using the results of [7], we obtain that the numerical series (24) converges and the relation (23) uniformly converges on $[0, \pi]$, and therefore, it converges in the space $L_{p}(0, \pi)$. Now we assume that

$$
B_{0}=f(0)-\sum_{n=1}^{\infty} B_{n}
$$

Then expression (23) coincides with expression (20), and therefore, series (20) converges to function in the space $\left(W_{p}^{1}(0, \pi)\right)$.

Now let us show that the coefficients B_{n} are uniquely found by using relation (20). Indeed, if series (20) converges in the space $\left(W_{p}^{1}(0, \pi)\right)$, then series (24) converges in the space $L_{p}(0, \pi)$ (see [7]), this implies that $\lim _{n \rightarrow \infty} B_{n}=0$. For $\beta \in\left(-\frac{1}{p}, 2-\frac{1}{p}\right)$. Now let us show that the system $\left\{\cos \left(n-\frac{\beta}{2}\right) \theta, 1\right\}_{n=1}^{\infty}$, does not composes a basis for $\beta \notin\left(-\frac{1}{p}, 2-\frac{1}{p}\right)$. If $\beta \in\left(2-\frac{1}{p}, 4-\frac{1}{p}\right)$ then, using the substitution $\beta-2=\beta^{\prime}$ and removing the first cosine, we obtain the cosine system $\left\{\cos \left(n-\frac{\beta^{\prime}}{2}\right) \theta_{n=1}^{\infty}, 1\right\}$, which as was proved above, composes a basis in $\left(W_{p}^{1}(0, \pi)\right)$, and therefore, the initial cosine system is not minimal in $\left(W_{p}^{1}(0, \pi)\right)$. Analogously, for $\beta \in$ $\left(-2-\frac{1}{p},-\frac{1}{p}\right)$, the substitution $\beta+2=\beta^{\prime}$, reduces the initial cosine system to the system with $\beta^{\prime} \in\left(-\frac{1}{p}, 2-\frac{1}{p}\right)$ in which there is no function $\left(\cos \left(1-\frac{\beta^{\prime}}{2}\right) \theta\right.$), and, therefore the initial cosine system is not complete. Other ranges of the parameter $\beta \in\left(-\frac{1}{p}+2 k, 2-\frac{1}{p}+2 k\right), k= \pm 1, \pm 2, \ldots$ can be considered analogously. Furthermore, for $\beta=2-\frac{1}{p}$ in the space $\left(W_{p}^{1}(0, \pi)\right)$, where $\hat{p}>p$, we have, $-\frac{1}{\hat{p}}<\beta<2-\frac{1}{\hat{p}}$, and therefore, the cosine system composes a basis in $W_{\hat{p}}^{1}(0, \pi)$, and hence it is complete in the space $\left(W_{p}^{1}(0, \pi)\right)$.

For $\beta=-\frac{1}{p}$, the cosine system is minimal, since as was proved above, the coefficients B_{n} are found by concrete formulas in the form of an integral. Let us show that for $\beta=2-\frac{1}{p}$, the cosine system is not minimal. By using the results of [5], we obtain that for $\beta=2-\frac{1}{p}$, the cosine system is complete but not minimal, and hence, for $\beta=-\frac{1}{p}$, the cosine system is complete (since it is minimal in this case). Now let us prove that for $\beta=-\frac{1}{p}$, the cosine system does not composes a basis. Let $f(\theta)=\theta$, then $f(\theta) \in\left(W_{p}^{1}(0, \pi)\right), f^{\prime}(\theta)=1$, and the coefficients B_{n} can be calculated by using the formula (21) exactly in the same way as in [5], where it was shown that a series converges to a function not belonging to $L_{p}(0, \pi)$, thus Theorem 3.4 is proved.

Theorem 3.5. Let $p \in(1, \infty), \beta \neq 2$. then the cosine system composes a basis in the space $\left(\bar{W}_{p}^{2 l}(0, \pi)\right)$, if and only if $\beta \in\left(\frac{-1}{p}, 2-\frac{1}{p}\right)$, and the expansion of a function $f \in\left(\bar{W}_{p}^{2 l}(0, \pi)\right)$
into the series has the form

$$
\begin{equation*}
f(\theta)=\sum_{n=1}^{\infty} \widetilde{B}_{n} \cos \left(n-\frac{\beta}{2}\right) \theta+\widetilde{B}_{0}, \tag{3.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{B}_{n}=\int_{0}^{\pi} f^{(2 l)}(\theta) H_{n-1}^{\beta-2}(\theta) d \theta\left(n-\frac{\beta}{2}\right)^{-2 l}(-1)^{l}, \quad(n=1,2,3, \ldots) \tag{3.10}
\end{equation*}
$$

and

$$
\begin{gathered}
\widetilde{B}_{0}=\int_{0}^{\pi} f(\theta) H_{0}^{\beta} d \theta, \quad \text { for, } \quad \beta<1, \\
\widetilde{B}_{0}=\int_{0}^{\pi}\left(f-\frac{f^{2 l}(-1)^{l}}{\left(1-\frac{\beta}{2}\right)^{2 l}}\right) H_{0}^{\beta-2} d \theta, \quad \text { for, } \quad \beta \geq 1 .
\end{gathered}
$$

Proof. Let $(\beta \neq 2)$. We first prove the basis properties of the cosine system for $\beta \in\left(\frac{-1}{p}, 2-\frac{1}{p}\right)$. Let $f \in\left(\left(\bar{W}_{p}^{2 l}(0, \pi)\right)\right)$. The inequality $\beta<2-\frac{1}{p}$ guarantees the existence of integrals (17) and (18). The function $f^{(2 l)}$ belongs to the class $L_{p}(0, \pi)$. Therefore, according to the results of [5], it is possible to write the expansion of the function $f^{(2 l)}$ into the following series in cosines:

$$
\begin{equation*}
f^{(2 l)}(\theta)=\sum_{n=0}^{\infty}\left(n-\frac{\beta}{2}\right)^{2 l}(-1)^{l} \cos \left(n-\frac{\beta}{2}\right) \theta . \tag{3.11}
\end{equation*}
$$

Sinces (27) converges in the space $L_{p}(0, \pi)$ to the function $f^{(2 l)}$ for $\beta \in\left(\frac{-1}{p}, 2-\frac{1}{p}\right)$. Integrating series (27) from 0 to θ and using (17) for $\mathrm{k}=\mathrm{l}$, we obtain that the following series uniformly converges:

$$
\begin{equation*}
f^{(2 l)}(\theta)=\sum_{n=0}^{\infty} \widetilde{B}_{n}\left(n-\frac{\beta}{2}\right)^{2 l}(-1)^{l} \sin \left(n-\frac{\beta}{2}\right) \theta . \tag{3.12}
\end{equation*}
$$

Now integrating the obtained series from π to θ, we have

$$
\begin{align*}
f^{(2 l-1)}(\theta) & =\sum_{n=1}^{\infty} \widetilde{B}_{n}\left(n-\frac{\beta}{2}\right)^{2 l-1}(-1)^{l-1} \cos \left(n-\frac{\beta}{2}\right) \theta \tag{3.13}\\
& -\sum_{n=1}^{\infty} \widetilde{B}_{n}\left(n-\frac{\beta}{2}\right)^{2 l-1}(-1)^{l-1} \cos \left(n-\frac{\beta}{2}\right) \pi+f^{(2 l-1)}(\pi) .
\end{align*}
$$

According to Corollary 2 of [5]. We have

$$
\left\|H_{n-1}^{\beta-2}\right\| \leq c, \quad\left(n \geq 1, \frac{1}{q}+\frac{1}{p}=1\right)
$$

therefore, applying (26) and the Holder inequality, we have $\left|\widetilde{B}_{n}\left(n-\frac{\beta}{2}\right)^{2 L+1}\right| \leq\left\|f^{2 L}\right\|_{L^{p}} \|$ $H_{n-1}^{\beta-2} \|_{L_{q}} \leq$ const,$n \geq 1$.

The obtained estimates immediately imply that the numerical series in converges ,therefore,the functional series in (29) also converges. Now, let $\beta<1$. Multiplying (29) by $\widetilde{H}_{0}^{\beta}(\theta)$,
integrating the obtained relation in the limits from 0 to π, and by using the results of [9], we obtain

$$
\begin{equation*}
f^{(2 l-1)}(\theta)=\sum_{n=1}^{\infty} \widetilde{B}_{n}\left(n-\frac{\beta}{2}\right)^{2 l-1}(-1)^{l-1} \cos \left(n-\frac{\beta}{2}\right) \theta \tag{3.14}
\end{equation*}
$$

Now, let $\beta \geq 1$. In this case, we multiply series (29) by $\widetilde{H}_{0}^{\beta-2}(\theta)$, integrate from 0 to π, we immediately obtain the required relation (29). Analogously it is proved that if we differentiate series $(20) \mathrm{k}$ times, where $k=0,1,2, \ldots, 2 l-1$, then the obtained series uniformly converges to $f^{(k)}(\theta)$ on $[0, \pi]$. Therefore, the cosine system composes a basis in the space $\left(\bar{W}_{p}^{2 l}(0, \pi)\right)$ for $\beta \in\left(\frac{-1}{p}, 2-\frac{1}{p}\right)$. For $\beta<\left(\frac{-1}{p}\right)$, the cosine system is not complete in $L_{p}(0, \pi)$, according to [5]. Therefore, series (28), cannot approximate an arbitrary function $f^{(2 l)}(\theta) \in L_{p}(0, \pi)$. Hence for $\beta<\left(1-\frac{1}{p}\right)$, the cosine system is not complete in the space $\left(\bar{W}_{p}^{2 l}(0, \pi)\right)$. For $\beta=\left(1-\frac{1}{p}\right)$, the cosine system is complete and minimal in the space $\left(\bar{W}_{p}^{2 l}(0, \pi)\right)$.

For $p=2$, the cosine system composes a Riesz basis. the proof of Theorem 3.5 is complete.

Remark 3.6. Let $\triangle \in(-\infty,+\infty)$ the system of function (10) a Riesz basis in $\left(\bar{W}_{p}^{2 l}(0, \pi)\right)$, if and only if $\triangle \in\left(\frac{-1}{4}, 0\right) \cup\left(0, \frac{3}{4}\right)$.

If $\triangle \geq \frac{3}{4}, \triangle \neq 1,2,3, \ldots$, then system (10) is complete but is not minimal in $\left(\bar{W}_{p}^{2 l}(0, \pi)\right)$. If $\triangle=\frac{-1}{4}$, then system (10) is complete and minimal but is not basis in $\left(\bar{W}_{p}^{2 l}(0, \pi)\right)$.
If $\triangle<\frac{-1}{4}, \triangle \neq 1,2,3, \ldots$, then system (10) is not complete but is minimal and Riesz basis in $\left(\bar{W}_{p}^{2 l}(0, \pi)\right)$.

Proof. The proof of Remark 3.6 reproduces that of Theorem 2.3 and Theorem 3.5.

References

1. Abbasi, N, Basis property and completeness of the eigenfunctions of the Frankl problem, (Russian) Dokl. Akad. Nauk, 425(3): 295-298, 2009, translation in Dokl. Math., 79(2), 2009: 193-196.
2. Bitsadze, A. V. Nekotorye klassy uravneniĭ v chastnykh proizvodnykh, (Russian) [Some classes of partial differential equations] "Nauka", Moscow, 448 pp., 1981.
3. Frankl, F., On the problems of Chaplygin for mixed sub- and supersonic flows. (Russian) Bull. Acad. Sci. URSS. Sér. Math., [Izvestia Akad. Nauk SSSR] 9: 121-143, 1945.
4. Van Haeringen, H., Kok, L. P., Table errata: Higher transcendental functions, Vol. II [McGraw-Hill, New York, 1953; MR 15, 419] by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi. Math. Comp. 41, 1983.
5. Moiseev, E. I., The basis property for systems of sines and cosines, (Russian) Dokl. Akad. Nauk SSSR 275(4): 794-798, 1984.
6. Moiseev, E. I., Abbasi, N., The basis property of the eigenfunctions of a generalized gas-dynamic problem of Frankl with a nonlocal parity condition and a discontinuity in the solution gradient. (Russian) Differ. Uravn., 45(10): 1452-1456, 2009, translation in Differ. Equ., 45(10): 1485-1490, 2009.
7. Moiseev, E. I., Abbasi, N., The basis property of an eigenfunction of the Frankl problem with a nonlocal parity condition in the Sobolev space $W_{p}^{1}(0, \pi)$, Integral Transforms Spec. Funct. 22(6): 415-421, 2011.
8. Smirnov, M. M., Uravneniya smeshannogo tipa., (Russian) [Equations of mixed type] Izdat. Nauka, Moscow 295 pp., 1970.
9. Zygmund, Antoni, Trigonometrical series, Dover Publications, New York, 1955.
(Naser Abbasi) Department of Mathematics, Lorestan University, Khorramabad, Iran.
Email address: abasi.n@lu.ac.ir
(Evgenii Ivanovich Moiseev) Moscow State University, 119992, Russia
Email address: eimoiseev@rambler.ru

[^0]: Date: Received: February 6, 2020, Accepted: March 31, 2020.

 * Corresponding author.

