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ON THE BASIS PROPERTY OF AN TRIGONOMETRIC FUNCTIONS
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Abstract. In the present paper, we write out the eigenvalues and the corresponding eigen-
functions of the modified Frankl problem with a nonlocal parity condition of the first kind.
We analyze the completeness, the basis property, and the minimality of the eigenfunctions
in the space W

2l
p (0, π), where W

2l
p (0, π) be the set of functions f ∈ W 2l

p (0, π), satisfying of
the following conditions: f (2k−1)(0) = 0, k = 1, 2, ..., l.
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1. Introduction
The classical Frankl problem was considered in [3]. The problem was further developed

in [2, pp.339-345], [8, pp.235-252]. The modified Frankl problem with a nonlocal boundary
condition of the first kind was studied in [1, 6]. The basis property of an eigenfunctins of
the Frankl problem with a nonlocal parity conditions in the space Sobolev was studied in [7].
In the present paper, we write out the eigenvalues and the corresponding eigenfunctions of
the modified Frankl problem with a nonlocal parity condition of the first kind. We analyze
the completeness, the basis property, and the minimality of the eigenfunctions in the space
W

2l
p (0, π). This analysis may be of interest in itself.

2. Statement of the modified Frankl problem
Definition 2.1. In the domain D = (D+ ∪D−1 ∪D−2), we seek a solution of the modified
generalized Frankl problem
(2.1) uxx + sgn(y)uyy + µ2sgn(x+ y)u = 0 in (D+ ∪D−1 ∪D−2),

with the boundary conditions

(2.2) u(1, θ) = 0, θ ∈ [0,
π

2
],

(2.3) ∂u

∂x
(0, y) = 0, y ∈ (−1, 0) ∪ (0, 1)
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(2.4) u(0, y) = u(0,−y), y ∈ [0, 1].

where u(x, y) is a regular solution in the class

u ∈ C0(D+ ∪D−1 ∪D−2) ∩ C2(D−1) ∩ C2(D−2),

and where

D+ = {(r, θ) : 0 < r < 1, 0 < θ <
π

2
},

D−1 = {(x, y) : −y < x < y + 1,
−1

2
< y < 0},

D−2 = {(x, y) : x− 1 < y < −x, 0 < x <
1

2
},

κ
∂u

∂y
(x,+0) =

∂u

∂y
(x,−0),−∞ < κ <∞, 0 < x < 1.(2.5)

Theorem 2.2 ([5]). The eigenvalues and eigenfunctions of problem (1-5) can be written out
in two series. In the first series, the eigenvalues λ = µ2nk are found from the equation

(2.6) J4n(µnk) = 0,

where µnk, n = 0, 1, 2, ..., k = 1, 2, ..., are roots of the Bessel equation (6), Jα(z) is the Bessel
function [4], and the eigenfunctions are given by the formula

(2.7) unk =

 AnkJ4n(µnkr) cos(4n)(
π
2 − θ), in D+;

AnkJ4n(µnkρ) cosh(4n)ψ, in D−1;
AnkJ4n(µnkR) cosh(4n)φ, in D−2,

where x = r cos θ, y = r sin θ for 0 ≤ θ ≤ π
2 , 0 < r < 1, and r2 = x2 + y2 in D+, x =

ρ coshψ, y = ρ sinhψ, for, 0 < ρ < 1,−∞ < ψ < 0, ρ2 = x2−y2, in D−1 and x = R sinhφ, y =
−R coshφ, for, 0 < φ < +∞, R2 = y2 − x2, in D−2.

In the second series, the eigenvalues λ̃ = µ̃2nk are found from the equation.

(2.8) J4(n−△)(µ̃nk) = 0.

Where n = 1, 2, ..., and k = 1, 2, ..., and the (µ̃nk) are the roots of the Bessel equation (8).

(2.9) ũnk =


ÃnkJ4(n−△)(µ̃nkr) cos 4(n−△)(π2 − θ), in D+;

ÃnkJ4(n−△)(µ̃nkρ)[cosh 4(n−△)φ cos 4(n−△)π2
+κ sinh 4(n−△)ψ cos 4(n−△)], in D−1;

ÃnkJ4(n−△)(µ̃nkR) cosh 4(n−△)φ[cos 4(n−△)π2
−κ sin 4(n−△)π2 ], in D−2,

where, ∆ = 1
π arcsin κ√

1+κ2
,∆ ∈ (0, 12), and

A2
nk

∫ 1

0
J2
4n(µnkr)rdr = 1,

Ã2
nk

∫ 1

0
J2
4n−1(µ̃nkr)rdr = 1,

Ank > 0 and Ãnk > 0.
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Theorem 2.3. The function system

(2.10) {cos(4n)(π
2
− θ)}∞n=0, {cos 4(n−△)(

π

2
− θ)}∞n=1,

is a Riesz basis in L2(0,
π
2 ), provided that △ ∈ (0, 34).

Proof. Let us show that any function f(θ) ∈ L2(0,
π
2 ) can be represented in the form

(2.11) f(θ) =
∞∑
n=0

An cos 4n(
π

2
− θ) +

∞∑
n=1

Bn cos 4(n−△)(
π

2
− θ),

in L2(0,
π
4 ). We have

f(θ)− f(
π

2
− θ) =

∞∑
n=1

Bn[cos 4(n−△)(
π

2
− θ)− cos 4(n−△)θ](2.12)

= −2 sinπ∆

∞∑
n=1

(−1)nBn sin 4(n−△)(
π

2
− θ).

The function system {sin 4(n−△)(π4 − θ)}∞n=1 is a Riesz basis in L2(0,
π
4 ) for ∆ ∈ (0, 34) (see

[5]). Therefore,

(2.13)
∞∑
n=1

B2
n ≤ b1∥f(θ)− f(

π

2
− θ)∥2L2(0,

π
2
) ≤ 2b1∥f∥2L2(0,

π
4
).

And according to the results of [7], we have the estimate

(2.14)
∞∑
n=0

A2
n +

∞∑
n=1

B2
n ≤ b2∥f∥2L2(0,

π
2
).

By squaring relation (11) and by integrating the resulting relation over the interval [0, π2 ],
we obtain ∫ π

2

0
f2(θ)dθ ≤ 2

∫ π
2

0
(

∞∑
n=0

An cos 4n(
π

2
− θ))2dθ + 2

∫ π
2

0
F 2(θ)dθ(2.15)

≤ c3(

∞∑
n=0

A2
n +

∞∑
n=1

B2
n).

From inequalities (14) and (15), we obtain the estimate

(2.16) a∥f∥2L2(0,
π
2
) ≤

∞∑
n=0

A2
n +

∞∑
n=1

B2
n ≤ b3∥f∥2L2(0,

π
2
).

The proof of the theorem is complete. □

3. The completeness, the basis property and minimality of the eigenfunctions

Definition 3.1. Let β < 2− 1
p . Let W̃ 2l

p (0, π) be the subspace of the space W 2l
p (0, π) consisting

of functions f ∈W 2l
p (0, π) satisfying the following boundary conditions:

(3.1) f2k(0) = 0, (k = 0, 1, ..., l − 1)
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and, for β < 1, let them satisfy condition:∫ π

0
f (2k−1)(θ)H̃β

0 dθ = 0, (k = 1, 2, 3, ..., l)

where

H̃α
0 =

Γ2(1− α
2 )

Γ(1− α)π(2 cos θ
2)

α
. (α = β − 2)

This restriction on β is connected with applied problems and is natural in this sense.

Definition 3.2. Let β < 2 − 1
p , and let (W

2l
p (0, π)) be the set of functions f ∈ W 2l

p (0, π)

satisfying the following conditions:

f2k−1(0) = 0, (k = 1, ..., l)

and, also the following conditions depending on the parameter β : For β < 1,

(3.2)
∫ π

0
f (2k)(θ)H̃β

0 dθ = 0, (k = 1, 2, 3, ..., l − 1)

and for β ≥ 1,

(3.3)
∫ π

0

(
f (2k) − f2l(−1)l−k

(1− β
2 )

2l−2k

)
Hβ−2

0 dθ = 0, (k = 1, 2, 3, ..., l − 1)

Hα
n =

2

π(2 cos θ
2)

α

{
n∑

k=0

Ck
α cos(n− k)θ − Cn

α

2

}
(n ≥ 0)

and

hβn =
2

π(2 cos θ
2)

β

n−1∑
k=0

Ck
β sin(n− k)θ.

Remark 3.3. For β = 1, condition (8) transforms to the condition f2k−2(π) = 0, k = 2, 3, ..., l
and for l = 1 conditions (7) and (8) do not occur.

Theorem 3.4. The system of function {cos(n− β
2 )θ}

∞
n=0 is a Riesz basis in (W 1

p (0, π)) if and
only if β ∈ (−1

p , 2−
1
p), β ̸= 1.

Proof. Using the formula (20) of [7], we have the relation

(3.4) f(θ) =
∞∑
n=1

Bn cos(n− β

2
)θ +B0,

where

(3.5) Bn = −
∫ π

0
f ′(θ)hβndθ(n− β

2
)−1. (n = 1, 2, ...)

The coefficient B0, depend on the Bn (see [7]). Consider the formally differentiated series
(20):

(3.6)
∞∑
n=1

Bn(n− β

2
) sin(n− β

2
)θ.
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Since the coefficient Bn, are found by formula (21), using the results of [5], we obtain that
Series (20) converges to f ′(θ) in the space Lp(0, π). Integrating Series (20) from 0 to θ, we
obtain the relation

(3.7) f(θ)− f(0) =

∞∑
n=1

Bn cos(n− β

2
)θ −

∞∑
n=1

Bn.

Which has a meaning if the following Series converges

(3.8)
∞∑
n=1

Bn.

By using the results of [7], we obtain that the numerical series (24) converges and the relation
(23) uniformly converges on [0, π], and therefore, it converges in the space Lp(0, π). Now we
assume that

B0 = f(0)−
∞∑
n=1

Bn.

Then expression (23) coincides with expression (20), and therefore, series (20) converges to
function in the space (W 1

p (0, π)).
Now let us show that the coefficients Bn are uniquely found by using relation (20). Indeed,

if series (20) converges in the space (W 1
p (0, π)), then series (24) converges in the space Lp(0, π)

(see [7]), this implies that limn→∞Bn = 0. For β ∈ (−1
p , 2 − 1

p). Now let us show that the
system {cos(n− β

2 )θ, 1}
∞
n=1, does not composes a basis for β ̸∈ (−1

p , 2−
1
p). If β ∈ (2− 1

p , 4−
1
p)

then, using the substitution β − 2 = β′ and removing the first cosine, we obtain the cosine
system {cos(n − β′

2 )θ
∞
n=1, 1}, which as was proved above, composes a basis in (W 1

p (0, π)),
and therefore, the initial cosine system is not minimal in (W 1

p (0, π)). Analogously, for β ∈
(−2− 1

p ,−
1
p), the substitution β+2 = β′, reduces the initial cosine system to the system with

β′ ∈ (−1
p , 2−

1
p) in which there is no function (cos(1− β′

2 )θ), and, therefore the initial cosine
system is not complete. Other ranges of the parameter β ∈ (−1

p+2k, 2− 1
p+2k), k = ±1,±2, ...

can be considered analogously. Furthermore, for β = 2 − 1
p in the space (W 1

p (0, π)), where
p̂ > p, we have, −1

p̂ < β < 2 − 1
p̂ , and therefore, the cosine system composes a basis in

W 1
p̂ (0, π), and hence it is complete in the space (W 1

p (0, π)).
For β = −1

p , the cosine system is minimal, since as was proved above, the coefficients Bn

are found by concrete formulas in the form of an integral. Let us show that for β = 2 − 1
p ,

the cosine system is not minimal. By using the results of [5], we obtain that for β = 2 − 1
p ,

the cosine system is complete but not minimal, and hence, for β = −1
p , the cosine system

is complete (since it is minimal in this case). Now let us prove that for β = −1
p , the cosine

system does not composes a basis. Let f(θ) = θ, then f(θ) ∈ (W 1
p (0, π)), f

′(θ) = 1, and the
coefficients Bn can be calculated by using the formula (21) exactly in the same way as in
[5], where it was shown that a series converges to a function not belonging to Lp(0, π), thus
Theorem 3.4 is proved. □

Theorem 3.5. Let p ∈ (1,∞), β ̸= 2. then the cosine system composes a basis in the space
(W

2l
p (0, π)), if and only if β ∈ (−1

p , 2 −
1
p), and the expansion of a function f ∈ (W

2l
p (0, π))
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into the series has the form

(3.9) f(θ) =

∞∑
n=1

B̃n cos(n− β

2
)θ + B̃0,

where

(3.10) B̃n =

∫ π

0
f (2l)(θ)Hβ−2

n−1 (θ)dθ(n− β

2
)−2l(−1)l, (n = 1, 2, 3, ...)

and
B̃0 =

∫ π

0
f(θ)Hβ

0 dθ, for, β < 1,

B̃0 =

∫ π

0

(
f − f2l(−1)l

(1− β
2 )

2l

)
Hβ−2

0 dθ, for, β ≥ 1.

Proof. Let (β ̸= 2). We first prove the basis properties of the cosine system for β ∈ (−1
p , 2−

1
p).

Let f ∈ ((W
2l
p (0, π))). The inequality β < 2 − 1

p guarantees the existence of integrals (17)
and (18). The function f (2l) belongs to the class Lp(0, π). Therefore, according to the results
of [5], it is possible to write the expansion of the function f (2l) into the following series in
cosines:

(3.11) f (2l)(θ) =

∞∑
n=0

(n− β

2
)2l(−1)l cos(n− β

2
)θ.

Sinces (27) converges in the space Lp(0, π) to the functionf (2l) for β ∈ (−1
p , 2−

1
p). Integrating

series (27) from 0 to θ and using (17) for k=l, we obtain that the following series uniformly
converges:

(3.12) f (2l)(θ) =

∞∑
n=0

B̃n(n− β

2
)2l(−1)l sin(n− β

2
)θ.

Now integrating the obtained series from π to θ, we have

f (2l−1)(θ) =
∞∑
n=1

B̃n(n− β

2
)2l−1(−1)l−1 cos(n− β

2
)θ

−
∞∑
n=1

B̃n(n− β

2
)2l−1(−1)l−1 cos(n− β

2
)π + f (2l−1)(π).

(3.13)

According to Corollary 2 of [5]. We have

∥ Hβ−2
n−1 ∥≤ c, (n ≥ 1,

1

q
+

1

p
= 1),

therefore, applying (26) and the Holder inequality, we have | B̃n(n − β
2 )

2L+1 |≤∥ f2L ∥Lp∥
Hβ−2

n−1 ∥Lq≤ const, n ≥ 1.
The obtained estimates immediately imply that the numerical series in converges ,there-

fore,the functional series in (29) also converges. Now, let β < 1. Multiplying (29) by H̃β
0 (θ),
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integrating the obtained relation in the limits from 0 to π, and by using the results of [9], we
obtain

(3.14) f (2l−1)(θ) =
∞∑
n=1

B̃n(n− β

2
)2l−1(−1)l−1 cos(n− β

2
)θ.

Now, let β ≥ 1. In this case, we multiply series (29) by H̃β−2
0 (θ), integrate from 0 to π, we

immediately obtain the required relation (29). Analogously it is proved that if we differentiate
series (20) k times, where k = 0, 1, 2, ..., 2l − 1, then the obtained series uniformly converges
to f (k)(θ) on [0, π]. Therefore, the cosine system composes a basis in the space (W

2l
p (0, π)) for

β ∈ (−1
p , 2−

1
p). For β < (−1

p ), the cosine system is not complete in Lp(0, π), according to [5].
Therefore, series (28), cannot approximate an arbitrary function f (2l)(θ) ∈ Lp(0, π). Hence
for β < (1− 1

p), the cosine system is not complete in the space (W
2l
p (0, π)). For β = (1− 1

p),
the cosine system is complete and minimal in the space (W

2l
p (0, π)).

For p = 2, the cosine system composes a Riesz basis. the proof of Theorem 3.5 is complete.
□

Remark 3.6. Let △ ∈ (−∞,+∞) the system of function (10) a Riesz basis in (W
2l
p (0, π)),

if and only if △ ∈ (−1
4 , 0) ∪ (0, 34).

If △ ≥ 3
4 ,△ ̸= 1, 2, 3, ..., then system (10) is complete but is not minimal in (W

2l
p (0, π)).

If △ = −1
4 , then system (10) is complete and minimal but is not basis in (W

2l
p (0, π)).

If △ < −1
4 ,△ ̸= 1, 2, 3, ..., then system (10) is not complete but is minimal and Riesz basis

in (W
2l
p (0, π)).

Proof. The proof of Remark 3.6 reproduces that of Theorem 2.3 and Theorem 3.5. □
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