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NUMERICAL SOLUTION OF FOKKER-PLANCK EQUATION USING
THE LEAST SQUARES METHOD WITH SATISFIER FUNCTION

M. NOEI KHORSHIDI AND M. A. FIROOZJAEE∗

Abstract. In this article, we have solved the Fokker-Planck Equation(FPE) by numerical
method. For the approximate solution of this problem, we used of polynomial basis functions
and the least squares method. The least squares method together with the satisfier function
are used to transform the the FPE to the solution of equation systems. Also, we debate the
convergence of the presented technique. Then we consider illustrative examples to represent
the applicability and validity of this method.
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1. Introduction and Background
FPE describes phenomena in different fields of natural science such as chemical physics,

solid-state physics, quantum optics and circuit theory [8]. In first, this equation was utilized
by Fokker and Planck (see [14]) to represent the Brownian motion particles. If a small particle
of mass m is immersed in a fluid, the equation of motion for the distribution function Q(s, t)
is given by:

(1.1) ∂Q

∂t
= γ

∂(sQ)

∂s
+ γ

KT

m

∂2Q

∂s2
.

Where t is the time, s is the velocity for the Brownian motion of small particle, respectively
γ, K and T are the fraction constant, Boltzmann’s constant, the temperature of fluid, and
[14]. Above equation is one of the simplest type of FPEs.
The general FPEs for the motion of a concentration field u(x, t) of one space variable x at
time t has the following form [1, 10, 11, 14, 16]

(1.2) ∂u

∂t
=

[
− ∂

∂x
A(x) +

∂2

∂x2
B(x)

]
u,

while the initial condition is:

(1.3) u(x, 0) = g(x), x ∈ R,
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where u(x, t) is unknown, B(x) > 0 is the diffusion coefficient, and A(x) > 0 is the drift
coefficient. The drift and diffusion coefficients may also depend on time i.e.

(1.4) ∂u

∂t
=

[
− ∂

∂x
A(x, t) +

∂2

∂x2
B(x, t)

]
u.

Equation (1.1) is seen to be a special case of the Fokker-Planck equation where the drift
coefficient is linear and the diffusion coefficient is constant. Equation (1.2) is an equation
of motion for the distribution function u(x, t). Mathematically speaking, this equation is
a linear second-order partial differential equation of parabolic type. Equation (1.1) is also
called forward Kolmogorov equation [1]. The similar partial differential equation is a backward
Kolmogorov equation that is [14] in the form:

(1.5) ∂u

∂t
=

[
−A(x, t) ∂

∂x
+B(x, t)

∂2

∂x2

]
u.

A generalization of equation (1.2) to N variables x1, · · ·xN has the following form:

(1.6) ∂u

∂t
=

− N∑
i=1

∂

∂xi
Ai(X) +

N∑
i,j=1

∂2

∂xi∂xj
Bi,j(X)

u,
where X = (x1, · · ·xN ) and the initial condition is:

(1.7) u(X, 0) = g(X), X ∈ RN .

The drift vector Ai and diffusion tensor Bi,j generally depend on N variables x1, · · ·xN .
Finding analytical solutions of the Fokker-Planck equation is difficult; especially, if no sepa-
ration of variables is possible or if the number of variables is large.
various methods of solutions are: numerical integration methods, simulation methods, etc.
[14].
There is a more general form of Fokker-Planck equation. Nonlinear Fokker-Planck equation
has important applications in various areas such as plasma physics, population dynamics,
engineering, polymer physics, biophysics, psychology and marketing [16]. In one variable case
the nonlinear Fokker-Planck equation is written in the following form:

(1.8) ∂u

∂t
=

[
− ∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)

]
u.

For N variables x1, · · ·xN it has the form:

(1.9) ∂u

∂t
=

 N∑
i=1

∂

∂xi
Ai(X, t, u) +

N∑
i,j=1

∂2

∂xi∂xj
Bi,j(X, t, u)

u,
where X = (x1 · · ·xN ). It is worth to note that some semi analytic methods are utilized to
solve the FPE. For example, by the Adomian decomposition method in [1] FPE is studied.
In [16], auther developed for this equation by VIM. Readers for other studies on this model
or other similar models the interested can see [6, 7, 12, 13, 17]. Researchers of [20] used a
finite difference method [2]-[5] to solve the type of FPEs that in a storage ring was explain-
ing the stochastic dynamics. The influence of electromagnetic models conduce to stochastic
differential equations in equivalently to the FPE and 6-dimensional phase space[20].
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In this investigation, we transform the problem to a set of algebraic equations system by
expanding the unknown function as Legendre polynomials, with unknown coefficients.
Recently, the spectral method with Satisfier function has successfully been applied to ap-
proximate the solutions of non-homogenous problems [9], [18] and [19]. The used technique
is to transform the given problem to the problem of finding optimal solution of a real value
function. Unknown functions are expanded with unknown coefficients and polynomial basis
functions. Then an algebraic function in terms of unknown coefficients is attained which
should be optimized with respect to its variables.
The different parts of this article are: In two section, we are appropriated to the solution of
FPEs by the least square technique. We debate the convergence of the technique in section
3. Section 4 includes our numerical findings together with demonstrating the accuracy of the
proposed scheme via some numerical examples. Finally, section 5 is conclusion.

2. Satisfier function and Least squares method

in this article, we consider the Fokker-Planck equation

(2.1) ∂u

∂t
=

[
− ∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)

]
u,

with initial condition

(2.2) u(x, 0) = g(x) 0 ⩽ x ⩽ 1.

Let

(2.3) F (u) =
∂u

∂t
−
[
− ∂

∂x
A(x, t, u) +

∂2

∂x2
B(x, t, u)

]
u = 0.

A least squares approximation to (2.3) is constructed as follows. The approximation unm is
sought in the form of the truncated series

(2.4) unm(x, t) =
n∑

k=0

m∑
l=0

cklψkl(x, t) + w(x, t)

where ψkl(x, t) = tϕk(x)ϕl(t), and {ϕk}∞k=0 are basis function. In relation (2.4), ψkl(x, t)
(for k = 0, 1, ..., n, l = 0, 1, ...,m), satisfy in homogenous condition and w(x, t) satisfies in
nonhomogeneous condition, thus unm(x, t) satisfies in condition (2.2). In this study, we take
{ϕk}∞k=0 the Legendre polynomials in [0, 1], and w(x, 0) = g(x). The first few Legendre



72 NOEI KHORSHIDI AND FIROOZJAEE

polynomials in [0, 1] are given by
ϕ0(x) = 1,

ϕ1(x) = 2x− 1,

ϕ2(x) =
1

2
(3(2x− 1)2 − 1),

ϕ3(x) =
1

2
(5(2x− 1)3 − 3(2x− 1)),

ϕ4(x) =
1

8
(35(2x− 1)4 − 30(2x− 1)2 + 3),

...
Let

(2.5) J(u) =

T∫
0

1∫
0

(F (u))2dxdt.

By the least squares equations, the expansion coefficients ckl are obtained

(2.6) min
ckl

J(unm) = min
ckl

∥F (unm)∥2,

for k = 0, ..., n, l = 0, ...,m, where

(2.7) ∥.∥2 =
T∫
0

1∫
0

(.)2dxdt.

Now, if in (2.6) we get by J(c00, c01, . . . , cnm) the expressions that are minimized, for min-
imization from the necessary and initial conditions, we should solve the systems that are
nonlinear.

(2.8) ∂J

∂ckl
= 0, k = 0, ..., n, l = 0, ...,m.

Least Squares equations (2.6) gives a system of (n +m + 2) nonlinear equations which can
be solved for ckl, k = 0, 1, ...., n, l = 0, 1, ....,m using Newton’s iterative technique.

3. The convergence

In first, we consider T = 1. This does not affect the generality of the subject. We debate
the convergence of the technique presented in previous section in this section. We represent
that the approximate value of µnm convergence to zero, while n and m increase and
(3.1) µnm = min

cij
J(unm) = min

cij
∥F (unm)∥2 .

In the following, we express some lemmas and the required function space.
Let H = [0, 1]× [0, 1]. and then we suppose the Banach space (C2

1 (H), ∥ . ∥∞) as follows

C2
1 (H) = {u : H → R | u, uxx, ut ∈ C(H)},
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and
D(H) = {h(x, t) ∈ C2

1 (H) | h(x, 0) = 0}.
In Lemma 1, it has been shown that polynomials of the metric space D(H) are dens in

D(H) space.

Lemma 1:Consider q(x, t) ∈ D(H). Sequence of polynomial functions
{lmn(x, t)}m,n∈N ⊂ D(H) such that lmn → q with respect to ∥ . ∥∞ exists in D(H) space.

Proof: In first, we suppose q(x, t) ∈ D(H), then ∂q(x,t)
∂t ∈ C(H). Now consider

q(x, t) = q(x, 0) +

∫ t

0

∂q(x, s)

∂s
ds,

there exists sequence of polynomials {kmn}m,n ∈ N such that kmn → ∂q
∂t with respect to

∥ . ∥∞. This is according to Weierstrass approximation theorem . Let

pmn(x, t) = q(x, 0) +

∫ t

0
kmn(x, s)ds.

Note that pmn(x, t) is a polynomial with degree depend on n and m. Besides, it has the
following properties
(3.2) pnm(x, 0) = q(x, 0) = 0,

and pmn → h, with ∥.∥∞.

■

Consider equations (2.1) and (2.2) . In addition, let Gmn(H) be as follows:

Gmn(H) = {lmn + f | lmn ∈ D(H)
∩

< {ϕi(x)}mi=0 × {ϕj(t)}nj=0 >},

< {ϕi(x)}mi=0 > is the Banach space that this space generated by polynomials of degree at
most m . Therefore Gmn(H) is a metric subspace of C2

1 (H).

Lemma 2: Suppose u(x, t) function be the solution of the Eq. (2.1). if m,n → ∞ with
respect to ∥ . ∥∞. , function u∗ ∈ Gmn(H) exists that u∗ → u.

Proof: With conditions u(x, 0) = g(x), suppose u be the solution of problem (2.1). Also
suppose q(x, t) := u(x, t) − g(x), obviously q(x, t) ∈ D(H). There exists a sequence of poly-
nomial basis functions {lmn(x, t)}m,n∈N ⊂ D(H) such that lmn → h with respect to ∥ . ∥∞.
This subject obtain according to Lemma 1
According to u∗(x, t) = lmn(x, t) + g(x), we have u∗ ∈ Gmn(H) and u∗ → u with respect to
∥ . ∥∞. ■
Now suppose J in (2.5) as an operator J : (C2

1 (H), ∥ . ∥) → R. Above lemma 3 represent that
the functional J is continuous on its domain. Theorem 1 is very important and key to prove
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the lemma and the next theorem.

Theorem 1:If B mapping be continuous of a metric space X into a metric space Y that
X and Y have compact space. Then B mapping has uniformly continuous.

Proof: [15].

Lemma 3: On the Banach space (C2
1 (H), ∥ . ∥∞), the J is continuous functional.

Proof: We represent that functional J : C2
1 (H) → R is continuous , where

J(u) =

1∫
0

1∫
0

B2dxdt.

Let ε > 0 and u∗ ∈ C2
1 (H). We consider

I = H × [−M − d,M + d]× [−M − d,M + d]× [−M − d,M + d]

and d > 0 where
M = max{∥u∗∥∞, ∥u∗xx∥∞, ∥u∗t ∥∞}.

Obviously we have
(3.3) Y ∗ := (x, t, u∗(x, t), u∗xx(x, t), u

∗
t (x, t)) ∈ I.

γ > 0 is given. Let ∥u− u∗∥ < δ and δ > 0. For small enough value of δ, we have
(3.4) Y := (x, t, u(x, t), uxx(x, t), ut(x, t)) ∈ I.

Since B is continuous mapping on I compact metric space with respect to all its arguments,
with the help of Theorem 1, B is uniformly continuous on I. So if δ > 0 be sufficiently small,
then |Y ∗ − Y | < γ implies that |B(Y ∗)−B(Y )| < ε. Thus, |J(u)− J(u∗)| < ε. ■
Now, we can represent the convergence of the technique.

Theorem 2: Consider µmn be the minimum of the functional J on Gmn(H). Then:
lim

m,n→∞
µmn = 0.

Proof: Suppose u ∈ C2
1 (H) be the solution of equation (2.1). Hence, J(u) = 0. With

the help of Lemma 2, there exists umn ∈ Gmn(H) such that limm,n→∞ umn = u. Since the
minimum function and the J are continuous functional, therefore we have

lim
m,n→∞

µmn = lim
m,n→∞

minJ(umn) = minJ( lim
m,n→∞

um,n) = J(u) = 0.

■
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4. Illustrative Examples

We use the technique that presented in Section 2 to solve the following examples.

4.1. Example 1. We consider equation (1.2), (1.3) with:[7, 8]
g(x) = x, x ∈ [0, 1].

Let in Eq. (1.2), we consider A(x) = −1, and B(x) = 1. The exact solution is u(x, t) = x+ t.
By the technique presented in section 2 with m = n = 1, we get the following values of ckls:

c00 = 1, c01 = 0, c10 = 0, c11 = 0,

and µnm = 0 . Thus from (2.4) we have
unm(x, t) = x+ t.

Which is the exact solution.

4.2. Example 2. In this exmplae, we consider equation (1.2), with A(x) = x, B(x) = x2

2
and g(x) = x [7, 8] . The exact solution is u(x, t) = xet. Using the present method in Section
2 we achieve the following values of cijs, for n = 1 and different values of m in approximation
(2.4)

m = 2 : c00 = 0.659505, c01 = 0.176129, c10 = 0.659211, c11 = 0.177011,

c02 = 0.0234729, c12 = 0.0228298,

m = 3 : c00 = 0.658926, c01 = 0.178068, c10 = 0.658934, c11 = 0.178044,

c02 = 0.0203988, c12 = 0.0204415, c03 = 0.00174825, c13 = 0.00172112,

m = 4 : c00 = 0.658952, c01 = 0.177989, c10 = 0.658952, c11 = 0.17799,

c02 = 0.0205326, c12 = 0.0205315, c03 = 0.00156732, c13 = 0.00156898,

c04 = 0.0000995086, c14 = 0.0000985175.

In the following table the values of minimum µnm for different values of approximations
are denoted. It is obvious that with increase in the number of n,m basis functions , the
approximate value µnm converges to zero.

n m µnm
1 2 3.63895× 10−6

1 3 3.63895× 10−8

1 4 9.16871× 10−11

The following table represents the absolute error using the procedure proposed in the sec-
tion 2 for m = 4, n = 1.
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Absolute error with n=1, m=4 for Example 2.
t x=0.2 x=0.4 x=0.6 x=0.8 x=1.0

0.01 1.19898E-7 1.97124E-7 2.74351E-7 3.51576E-7 4.28802E-7
0.05 3.10534E-7 4.87321E-7 6.64108E-7 8.40895E-7 1.01768E-6
0.10 1.65711E-7 2.09041E-7 2.52371E-7 2.95701E-7 3.39031E-7
0.15 1.07986E-7 2.55929E-7 4.03873E-7 5.51816E-7 6.99761E-7
1.00 3.00371E-9 1.19279E-9 6.18126E-10 2.42904E-9 4.23995E-9

4.3. Example 3. In this example, we consider the backward Kolmogorov equation (1.5) [7, 8]
with diffusion and drift coefficients given by:

A(x, t) = −(x+ 1),

B(x, t) = x2et.

The initial condition in (1.3) be given by:

g(x) = x+ 1,

. The exact solution is u(x, t) = et(x+ 1).
The values of approximate minimum µnm, for different number of basis functions n,m, are

demonstrated in the following table.

n m µnm
1 2 5.52151× 10−5

1 3 2.3303× 10−7

1 4 6.05615× 10−10

The following table shows the absolute error using the procedure proposed in the section 2
for n = 1,m = 4.

Absolute error with n=1, m=4 for Example 3.
t x=0.2 x=0.4 x=0.6 x=0.8 x=1.0

0.01 6.98206E-7 6.74692E-7 6.51179E-7 6.27665E-7 6.04152E-7
0.05 1.76917E-6 1.62712E-6 1.48506E-6 1.34301E-6 1.20095E-6
0.10 8.40025E-7 5.84412E-7 3.28798E-7 7.31848E-8 1.82429E-7
0.15 8.25439E-7 1.08358E-6 1.34171E-6 1.59985E-6 1.85799E-6
1.00 5.1126E-9 7.81422E-9 1.05158E-8 1.32175E-8 1.59191E-8
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4.4. Example 4. Consider[7, 8] the nonlinear Fokker-Planck equation (1.8) with:

A(x, t, u) =
7

2
u,

B(x, t, u) = xu,

and

g(x) = x.

The exact solution is u(x, t) = x
t+1 . Using the present method in Section 2 we achieve the

following values of cijs, for n = 1,m = 2 in approximation (2.4)

c00 = −0.344824, c01 = 0.114111, c10 = −0.345492,

c11 = 0.115604, c02 = −0.019282, c12 = −0.020134,

and
µnm = 5.24079× 10−5.

The approximate solution of u(x, t) obtained with n = 1,m = 2 at t = 0.5 is plotted in Figure
1 in comparison with the exact solution. Since the error is very low, the numerical solution
is coincide to the exact solution.

0.2 0.4 0.6 0.8 1.0
x

0.1

0.2

0.3

0.4

0.5

0.6

0.7
u(x, 0.5)

Fig.1. approximate solution and Exact(—) of u(x, 0.5) (• • •).

5. Conclusion

In this manuscript, the satisfier function in Least squares method was successfully used for
solving the FPEs. The choice of satisfier and basis functions provide great flexibility with
which to impose initial conditions. Moreover, only a small number of bases are requiered to
obtain a satisfactory result. The convergence of the technique has been extensively debated
and illustrative examples to display applicability and validity of the new method are included.
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