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TO NUMERICAL EXPLORE A FRACTIONAL IMPLICIT
Q-DIFFERENTIAL EQUATIONS WITH HILFER TYPE AND VIA
NONLOCAL CONDITIONS

MOHAMMAD ESMAEL SAMEI" AND ALIREZA HATAMI

ABSTRACT. This paper tries to show that there is only one solution for problem of fractional
g-differential equations with Hilfer type, and it does so by using a particular method known
as Schaefer’s fixed point theorem and the Banach contraction principle. After that, we create
a integral type of the problem for nonlocal condition. Next, we show that Ulam stability is
true. The Grownwall rule for singular kernels of the equations helps to show our findings are
correct. We confirm our findings by giving a few practical examples.

MSC(2010): 34A08; 26A33; 34B15.
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1. Introduction

Kilbas, Hilfer, Podlubny and some other potential mathematicians have developed the
subject of fractional calculus well [19, 28, 31]. Researchers are using a type of differential
and integral equations with fractional order in different parts of engineering, math, physics,
and bioengineering [1, 2, 5, 14, 17]. There are many ways to talk about fractional integrals
and derivatives. But, the two most common ways are called Riemann-Liouville and Caputo.
Recently, Hilfer has introduced a generalized form of the Riemann-Liouville fractional deriv-
ative [19]. We suggest that you read a bunch of papers to see how they recently used the

Hilfer fractional derivative [15, 20, 41].
In recent research works, several researchers studied fractional implicit differential equa-
tions (FIDEs) [4, 9, 16, 36, 37]. Sousa et al. investigated the Ulam-Hyers-Rassias (U-H-S)

stability for FIDEs using the ~-Hilfer operator [35]. Vivek et al. discussed about the exis-
tence solutions and U-H stability results for pantograph FDs with Hilfer fractional deriva-
tive [38, 39]. The U-stability analysis is very useful in many applications, such as numerical
analysis, optimization, etc., where finding the exact solution is quite difficult [23, 40,
Wang et al. discussed the ex1stence of solutions to nonlocal initial value problem of Hllfer
type FDE as form

D™B(s) =4 (s,B(s)), se€J:=la,7],a=0,

m

I'- Z,B Z:alﬁvZ r<fl=r+~vy—ry<l1, v €J,
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98 M.E. SAMEI AND A. HATAMI

where 0 < r < 1,0 <~ <1 [1]]. In 2020, Harikrishnan et al., investigated the pantograph
equations of the form

D™ f(s) = ¢ (s, B(s), B(ks), "D B(ks)), s € J,
p_z-lffﬁ(a):ﬂa’ r<ft< 1,

where PD™7 the Hilfer-Katugampola fractional derivative of order 0 < r < 1, type 0 <~ < 1,
with respect to p > 0 and PZ'~¢ is fractional integral order 1 — ¢ such that ¢ = r 4+ — 7,
1+ JxR3 is a given continuous function and 0 < ¢ < 1 [18]. The theory of fractional quantum
differential equations has become an area of research investigation in the last years, see for
example [12, 24, 29] and the references cited therein. Many scholars pay attention to differen-
tial equations involving fractional g-calculus [3, 6, 10, 25]. There have been some monographs
dealing with the existence and Ulam-stability of solutions for fractional ¢-differential equa-
tions by the use of some well-known fixed point theorems [6, 11, 21, 22, 27, 30, 33].

The goal of this paper is to research an equation that includes a type of fractional quantum
derivative called a Hilfer fractional g-derivative, and has nonlocal condition (HFIg — DE):

Dy7B(s) =4 (s,B8(s), D) 7B(s)) , s €,

(11) leieﬂ(O):Zaiﬁ(Ui)? réf:’[‘—i—’y—’f’7<1, Ui€J7
=1

where 0 < 7 < 1,0 < v < 1 are order and type of Hilfer fractional g-derivative, ¢ : Jx R? — R
is a given continuous function, (1 — ¢) is order of left-sided Riemann-Liouville fractional g¢-
integral, a; are real numbers and v;, ¢ = 1,2,...,m are prefixed points satisfying 0 < v; <
vy <o < vy < T

This document is laid out like this. Section 2 has important ideas about the Hilfer fractional
qg—derivative. In Sections 3 and 4, we show our main outcome by using Schaefer’s theorem for
finding a fixed point and we talk about checking if something is stable, respectively. Section 5
has some things to show.

2. Preliminaries

Let Ts, = {0} U {s cs=s0q",0<¢q< 1}, for R € N, g9 € R [10]. If there is no confusion
concerning sy we shall denote Ty, by T. Define [r]; = (1 — ¢")(1 — ¢)~! for r € R [25]. The
g-factorial function (s — y)q(n) for s, v € Rand m € Ny := {0} UN; is defined by ([3]),

n—1 R
_ @ = T=o(s —vg¥), mel,
(2.1) (s —v), { 1, T,
and for r € R, we have
(2.2) (s — )(T)_Tﬁﬂ
) s—v)’ =s P
k=0
For more details for the function, we recommend see [6, 7, 13, 34]. Note that s(") = s"

whenever v = 0. The ¢-Gamma function is given by I'y(r) = (1 —¢)!™"(1— q)((f_l), Note that,

Ly(r +1) = [r]gT'y(r) and ¢-Beta function is defined by B,(¢,r) = % [7, Lemma 1].
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The higher order ¢-derivative and the ¢-integral of a function 5 : T — R are defined by
(2.3) DyB(s) = (i), B(s) = PP vs e T\ {0},

D,5(0) = limy0 D, B(s), Dy’ B(s) = Dy (D~ '5(s)), for all m > 1 and

S (o)

(2.4) 73 = [ Bmdm=si-0 Y ¢56's).  0<s<,
0 k=0

provided the series is absolutely converges, respectively [3]. If s € [0, Tp], then

(2.5) / B)dgw = T,5(t0) = LB(s1) = (1—q) Y q" [TOB q"7) — s18(q 81)]
k=0

In [3], operator Z;" is given by Z°8(s) = B(s) and Z]'8(s) = Z,(Z; ' f(s)), where n > 1,
B € C(J). It has been proved that D, (Z,5(s)) = B(s), Z,(D,B(s)) = B(s) — B(0), whenever

the function f is continuous at s = 0 [3]. The fractional Riemann-Liouville type g-integral of
the function is defined by

T 3 (8 — V)(](T_l) 0
(26) 5o = [ UL A B = 6(s),
0 Ly(r)
Vse Jand r >0 [6, 13]. The Caputo fractional g-derivative of the function /3 is defined by
p 0 (ph ST e
(2.7) y B(s) =1 (Dq 5(3)) :/0 qu Bv)dgv,

for all s € J and r > 0 [13, 32]. It has been proved that ZI* (Zr25(s)) = Z]**"2(s) and
C@; (Z78(s)) = B(s), where ri,79 > 0 [13]. See [20, 28, 3] for numerical Algorithms.

Definition 2.1. [19] The left-sided Hilfer fractional g-derivative of order 0 < r < 1 and
0 <~ <1 of function S(s) is defined by

Dj7(s) = L0 D (Z1006(s)), D=

Sl=

Remark 2.2. (see [19])

(1) The operator ;" also can be written as
Y 1—r 1—y)(1—r _ 1—r 0
D =10 p (z; 7 )5(8)) = (=) (Dqﬁ(s)) ,

with £ =r 4+~ —ry.
(2) The left-sided Riemann-Liouville and Caputo fractional derivative can be presented
as Dy = D(;’O and C’DqTﬁ(s) = Z;}”Dﬁ(s) whenever v = 0 and v = 1 respectively.

Lemma 2.3. [28, Property 2.1] If r > 0 and v > 0, there exist

/87 (s) = msrﬂ_l, DB Hs) =0, (0<r<1).
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3. Main Results

We consider the Banach (B) and Lebesgue-integrable functions spaces, C(J) and L!(J)
with the norms ||8||c = max {|5(s)| : s € J} and

T
I8, = [ 18O ax
respectively. Also, we define the weighted space by
Co(d) = {5 - (0,70] = R : s88(s) € C(J),0< £ < 1}.
Obviously, Cy(J) is the B space with the norm ||3||c, = [|s°B(s)||c. Meanwhile,
Cr) ={Becm): " e )},

is the B-space with the norm

1Bl = 5 [s®]|+ |5
=0

Moreover, CP(J) = Cy(J).

Lemma 3.1. /28, Lemma 2.3] If r > 0, v > 0, and 3 € L'(J), for s € J there emist

the following properties T, (I} 5(s)) = 77 H6(s) and Dy (Z78(s)) = B(s). In particular, if 3
belongs to Cy(J) or C(J), then these equalities hold at each s belongs to (0, To] or J, respectively.

Lemma 3.2. [25, Lemma 2.5] Let 0 <r < 1,0 < < 1. If B € Cp(J) and ;" € C}(J),

then
71
7 (DjB(s)) = B(s) - qrq(i()o)sr—l,

Lemma 3.3. [20, Lemma 13] For 0 < { <1 and 3 € Cy(J), then Z] B(0) := lim,_,o+ I B(s) =
0 for0<£t<r.

n € N.

e’

Vsel.

Lemma 3.4. [20, Lemma 20] Letr >0, v >0, and { =r +~v —rv. If
Bect ()= {ﬂ €Ch(7) : DI € CH(J)},
then T (DLB(s)) = Z7 (DyB(s)) and DL(ZIB(s)) = D7 B(s).
Lemma 3.5. [20, Lemma 21] Let 3 € L'(J) and DJ(I_T)[? € LY(J) existed, then
D (T B(s)) = 70" (pqv(l—r)ﬁ(s)) .

Lemma 3.6. [20, Theorem 23] Let ¢ : J x R — R be a function such that » € C1_¢(J) for
any B € C1—¢(J). A function B € C{_,(J) is a solution of q-fractional IVP

D;7B(s) = (s, B(s)), 0<r<1, 0<y<1,

Z}7B(0) = P, (=r+~—r17,
iff B satisfies the following q-integral equation:

8[—1 S(g—p (r-1)
) = P+ [ S v ) 4
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From Lemma 3.6, one can be established an important equivalent g-integral equation for
problem (1.1) which in it, we used some ideas from [11, Lemma 2.12], as form

o L v ~ S (s—y (r=1)
B0 80 = gy S [ s dos [ S Do)

where

(3.2)

(1]
I
L —
=
LS}
—~
~
~
8
<
ST
L
| IS
L
—
L)
—~
S
~—
“h
S
<
~
[

and 1/;5(8) = (s, B(s), Dy B(s)).

The existence of solutions for Problem (1.1) is discussed in the sequel.

Lemma 3.7. Assume that v € C(J x R?). A function 8 € Cf_,(J) is a solution of the
problem (1.1) iff B satisfies Eq. (3.1).

Proof. We expressed a solution of problem (1.1) by employing Lemma 3.6, by

Il—ﬁﬁ(o) s (S _ V)(T_l) ~
3.3 B(s —qsg_l—i—/ A (v d.
(33) ®) =" s,
By substituting s = v; into the equation and multiplying a; to both sides, we have
Il £3(0) Ui (; — V)(T—l) -
3.4 a; B8 7%115_1 —l—ai/ ———A—g(v) dyv,
(3.4) ) = "5 L
Thus, The nonlocal condition implies that
Il % D
71-5(0) Zazﬁ Zaz - 1+Za1/ e s
q(r
indeed
(3.5) 71-5(0) EZ / D5 (v) dy.

Egs. (3.5) to (3.3) imply Eq. (3.1). Furthermore, 3 is a solution of the Eq. (3.1), when £ is a
solution of (1.1). Applying Ilfé to both sides of (3.1), we have

2 [ e+ (5

71-45(s EZ / " (01 = V() dg + TG (5),

Since 1 — ¢ <1 —~(1 —r), Lemma 3.3 can be used when taking the limit as s — 0,

(3.6) 71-5(0) ~Z / VD) dyv.

I]
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Substituting s = v; into (3.1), we obtain
m

v; U‘—V(r_1)~
leaz/ w= ) s [T

Bvi) =

° Ly(r)
Then, we derive
; aiﬁ(vl) - Fq:(,?“) Zz:; a/z/o (Uz l/)q(r_l)wﬁ(y) dqy; a; vf 1
S A G
+ Zz:; a; ; Pq(T) i/Jg(V) dqy
= = S -1 - [ (v; — y)q(r D
= (1+s_alzlazvﬁ > izlaz/o Fq(T) 7,[16(7/) dqy
R P P L B,
B FZ(T)H;%/O (vi — V)" (V) dgv,
that is
S D0 [ )
0 2 aib(vi) = FQET;E > ai/ (vi =) Vs (v) dyr
i=1 q i—1 0

It follows (3.6) and (3.7) that 1211_46(0) = >, a;8(v;). Now by applying Dqg to both sides
of (3.1), it follows from Lemmas 2.3 and 3.4 that
(3.8) DyB(s) = Dy g(s) = DY (s, B(s), Dy 7 B(s)) -
B e CL_,(J), implies that DS € Cy_¢(J), and D7y = DT} """y € C1_o(J). Further-
more, from v € Cl_g(J) we have L it T)w € C1_¢(J). Thus LI_W(I_T)w € C{_,(J). Hence,
1 and Z] —v(=r) 1 satisfy the conditions of Lemma 3.2. Next, by applying Z?(l_r) to both
sides of (3.8) and Lemma 3.2, we obtain

1—v(1—7r) 7
L 05(0) oo,

Ly(y(1 7))

where Z](l*r)zﬂﬂ(()) = 0 is implied by Lemma 3.3. Hence, it reduces to D)75(s) = (s).
The results are proved completely. O

D7 B(s) = a(s) -

Theorem 3.8. the problem (1.1) has at least one solution in

Cl_(3) C 70 = {B e Cru) s DB e L)},
whenever
(H1) There exist 3, € C1_¢(J) with B, = supyc; B,(s) <1, 1=0,1,2, such that

(s, B1, B2)| < Bo(s) + B1(s) 81| + Ba(s) Bzl s€J, pr1,02 €R.
Proof. Consider the operator P : C1_p(J) = C1_¢(J).

Esﬂfl m v; B s 5
B9 PO = Ty o [ NVEW A+ [ G-
=1
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Step 1: Let 3, be a sequence such that 5, — 5 € C1_y(J). Then for each s € J,

(PB)(s) = (PB)(s)) s~
E Zf;al/ﬁ —Arl‘ﬂlﬁn — (A ‘qu
gl= l s - ~
S e LR
+ B0 155, = 50,
< 2D (2L a4 [0~ 00,
a =1 e

where we use the formula

[e=nrsorans ([e-0r 00 -0 ) I8l
~ (s = )Y By (1) [ .

Continiouty 43 implies that |Pg, — PBlc, , — 0asn — oo. Thus, P is continuous.

103

Step 2: It is enough to show that for n > 0, there exists a positive constant [ such that
B e By={8¢€Cie(J) : I8 <n}, we have [P(B)ll¢, , <1, and [s'=(PB)(s)| < oA + A,

where

e S [ o

gt 7o )
(3.10) o= fs [ =0 0] o
and by (H1),
[Ba(s)| = [0 (5, 85), B(5) )| < Bo(s) + Bus) 18(5)| + Bals) s (s)|
) <B5 +B 1906+ 55 [fato| < DAL
P2

We estimate @7, <% terms separately, we have

m B X 7%, rHl—1
_ g (_Bovi P v
A= ;“’<r CES RS WO RIS ”5”01%)’
r—_0+1

r—+1

SR 18l )

_ 1 (Fw
s e (R
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Thus,

-

JREYS s Bo = ! r40—1
90| = gt (et 4

ﬁ—l = S NOTAYS ot T> =
+ (1 =By )Ty(r) ('J;Gl(”l) + 10 ) By(4,r) [1Blle,_, == L-

So, P maps bounded sets into bounded sets in C7_,(J).
Step 3: Let s1,52 € J, 52 < s1, By, be a bounded set of C;_,(J) as in Step 2, and let 5 € B,,.
Then

S (PB)(s1) —s5™(PB)(s2)|

Si—f s1 (re1).7 S%_Z S2 o)
<8 [ e ae s an - s [ - 05004
1 [ -~ ) o
< g e = = s - ] B 0y
St s i
o [, G2 W

As s1 — s9, the right hand side of the above inequality tends to zero. This yields, P maps
bounded sets into equicontinuous set of C7_¢(J). As a consequence of Step 1 to 3, together
with Arzela-Ascoli theorem, we can conclude that P : C1_¢(J) — Ci_¢(J) is completely
continuous.

Step 4: We consider the set of all § € Ci_p(J) with this feature that § = §(PfS), here
0 < 6 < 1 and denote by Y. Thus, for 5 € T, we have

8(s) = [';’qsilfjaz/ = NE D50

=1

lf)ﬂ )‘) ( 1)
U A, v :
r) dq seJ
This implies by (H2) that for each s € J, we have
1-¢ 1— f BO = r4+—1
‘s 5(8)‘ ’ (PB)(s ‘_ (] |y a;iv] + T, )
(1= By)Ty(r+1) Z

B* = r+L— r
+ — =l Zai oM g ) Bo(6r) 1Bl = R
i=1

(1-5,") ry(r)

This shows that the set T is bounded. As a consequence of Schaefer’s fixed point theorem,
we deduce that P has a fixed point which is a solution of problem (1.1). The proof is
completed. 0

Theorem 3.9. Assume that
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H2) Let ¢ : J x R? = R be a function such that ¢ € C’Vgl_T) J) for any B € Ct_,(J) and
1—¢ 1—¢
there exist positive constants K1, Ko > 0 such that

2
’¢(37517ﬁ2)_w(37ﬂ’1762>’ SZKZ /82_18’1 ) vﬁl?ﬁ/l ERa s € J.
i=1
If
K B, (¢, T ;
(3.13) (1_1[(2) F‘Z(r?(’:’;awiM 1+T0> <1,

then the system (1.1) has a unique solution.

Proof. Let the operator P : C1_s(J) = C1_¢(J).

ERnEs

w [ — DG ’
f ) AR [

Lemma 3.7 shows that the fixed points of P are solutions of system (1.1). Let g1, 82 € C1_¢(J)
and s € J, then we have

Y

(PB)(s) = GICERVIGERY

(P)(s) ~Pa) | < 2 D [ =Y [ )~ d, )] 4

81—2:1 s 1) |7 ~
(3.19) ey [N [ ) = D] 4
and
D () = D ()] < K B(s) = Bals)| + Ka [ (5) = D )|
(3.15) < o 1)~ A2l

By replacing (3.15) in the inequality (3.14), we get
(PB1)(s) —(PB2)(s)) s

‘E‘ - . K r+4—1 _
< oD el s Bl = )

81—[ Sr+€—1 Kl
o (15 Bt 161 -l
K, B(ﬁ,?") - S =1 T
(i) 107 (et %) 1=l
Hence,
K1 By(4,7) A .
|(PBy) — (7352)”(;1_4 < <(1—1KZ)Fq(r)> (\:\ Zai AR To) 181 = Balle, _, -

=1

From (3.13), it follows that P has a unique fixed point which is solution of problem (1.1). O
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4. Stability Analysis

In this section, we prove four different types of U-stability results for problem (1.1). A
function 8 € Cffe(J ) is a solution of the inequality

(4.1) DIB(s) — <5,6(8),D;vw’(s))) <e, sel,

iff there exist a function g € CY_,(J) such that
() lg(s) [<eseld;
(i) D7 B(s) = (s, B(s), Dy B(s)) + g(s), for each s € J.

Definition 4.1. [13] The problem (1.1) is U-H, generalized U-H stable, and U-H-R, general-
ized U-H-R stable with respect to ¢ € C1_;(J), if there exists

e a real number Cy > 0 such that for each € > 0 and for each solution B e ct ,(J) of
inequality (4.1) there exists a solution 8 € C{_,(J) of problem (1.1) with

|B(s) = B(s)| < Cye;

e vy € C([0,00),[0,00)), ¢y(0) = 0 such that for each solution 5 e CY_,(J) of the
inequality (4.1), there exists a solution 3 € CY_,(J) of problem (1.1) with

|6(s) = B(s)] < wue;

e a real number Cy > 0 such that for each ¢ > 0 and for each solution Be ct_,(J) of
the inequality

2;78(s) = v (5.8(). D) 78(9)) | < eels).

there exists a solution 8 € Cf_,(J) of problem (1.1) with }ﬁ(s) — B(s)| < Cyep(s);
e a real number Cy , > 0 such that for each solution B € Cf_e(J ) of the inequality
D;78(s) = (5. (), 07 () )| < ()
there exists a solution 8 € Cf_,(J) of problem (1.1) with }ﬁ(s) - B(s)’ < Cypp(s);
for s € J, respectively.

Lemma 4.2. If a function f € Ct_,(J) is a solution of the inequality (4.1), then B s a
solution of the integral inequality

, S(s— A1~ 12| (ma)t5T ! T
0 i - o [[EEE i) < (B iy )
where,
ESe_l v .
(4.3) 527[3 = Fq(T) ‘ ai/l (v; — y)q(Tfl)wa/(y) dyv.

=

~
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Proof. By explanations at the beginning of this section, we have D7 A(s) = 1;3(5) + g(s).
Then

]

{—1

B0 = 22> (M- [ )
g i=1

B J’B(/\ C(r—1) (s =AY
—i—/o W) (s = A) dq)\+/0 711(1(70) g(A) dgA.

~—

From this it follows that

, (3 NGO
) - oty [ 20000
= Z 1 m 5 (g — (r=1)
S /0 Vg [T g4
a\") q
'—' g1 m s (r-1)
:‘ a: _ 7‘ 1) (8 — )‘)q
<2 S o] A+ [T )] 4
|E| maTHT 1 T
: ( LotD ot 1>>€’
where a = max{a; : i =1,2,...,m}. O

Lemma 4.3. If a function § € C'f_g(J) is a solution of the inequality (4.1), then Bis a
solution of the integral inequality

—apy- [T g0 >qu' (25 (ma) + 1) Cyps),
where,A is defined by (4.3).

(4.4)

Proof. The proof of the theorem directly follows from Lemma 4.2. 0
The next Lemma 4.4, is generalization of Gronwall’s lemma for singular kernals.

Lemma 4.4. [8, Lemma 3.4] Let B : J — [0,00) be a real function and w(-) is a nonnegative,
locally integrable function on J and there are constant a > 0 such that

B(s)gg(s)%—a/os(sé(i‘)mdq)\, 0<r<l1.

Ja

Then there exists a constant K, such that

5(s)§g(s)+Kra/Os(s(>\)) d\,  Vseld

We ready to prove our stability results for problem (1.1).

Theorem 4.5. If the hypothesis (H2) and (3.13) are satisfied, then the problem (1.1) is
U-H stable.

Proof. Let € >0, S € Cf_E(J ) be a function which satisfies the inequality:

(4.5) DrB(s) — (3, B(s), D;vw’(s))‘ <e,  sel,
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and B € Cf?K(J ) the unique solution of the following implicit differential equation
Di7B(s) = (s,8(s), DTWB(S)) s e,
Iql*eﬁ( ) = Il 5(0) Za,ﬁ (vi), vieJ,l=r+~y—ry,

where 0 <7 < 1,0 < < 1. Using Lemma 3.7, we obtain

s r—1
(s =N -

(1.6 (s) = oy + [ TN A

where

On the other hand, if A(v;) = A(vi), and Z}=*8(0) = Z}~*4(0), then Ag = Aj. Indeed,

|E| 8(—1 m . V5 ‘ (r—1) | 7 -
s~ ty| < ;/0 (= 7[5 3) = 9500)]
Bl s 1) (K1
B [l () v
K12 s &

Thus, @z = dﬁf. Then, we obtain afin Eq. (4.6). By integration of the inequality (4.5) and
applying Lemma 4.2, we obtain

[ [ ]« (Tt

and so, by using (4.7), we have

o) )| <t~ i [T g 000

+/O(S_FA()Q))¢< ~ d5(r \qu

o 2 s

+(1_K2)Fq()/o<s— ”)ﬂ 5OV b,

|E| maTZJrrfl "
< 0 4 0 €
- Ly(r+1) Ly(r+1)

K e s -
e Y [ B0



TO NUMERICAL EXPLORE A FRACTIONAL IMPLICIT ¢-DIFFERENTIAL EQUATIONS ... 109

for s € J, and to apply Lemma 4.4, we obtain

VKT €
(1 - K2)Lg(r+1)] Ty(r+1)

809~ 505 < (IElmars™ "+ 17) |1+ - Cue

where v = v(r) is a constant, which completes the proof of the theorem. Moreover, if we set

(e) = Cype; ¢(0) = 0, then the problem (1.1) is generalized U-H stable. O

Theorem 4.6. Assume that (H2),

(H3) There exists an increasing function ¢ € Ci_¢(J) and there exists C, > 0 such that
Z7¢(s) < Cpp(s) for s e,

and (3.13) are satisfied, then the problem (1.1) is U-H-R stable.

Proof. Let € > 0 and let § € Cf_,(J) be a function which satisfies the inequality:

(4.8) D7B(s) = ¥ (5. 8(s), DB ) | S els), s€ .
and let B € CY_,(J) the unique solution of the following implicit differential equation
D;7B(s) = (s,8(s), Dy 7B(s)) s, se€,
IB(0) =77 5(0) = > aiB(vi), vi€J L=r+7—r7,
i=1
where 0 <7 < 1,0 <+ < 1. Using Lemma 3.7, we get Eq. (4.6). By integration of (4.8) and

applying Lemma 4.3, we obtain

’ﬂ(s) — 5 — /Os W&B(A) dq)\’ < (\E\ s tma + 1) €Cop(5).

On the other hand, by using Eq. (4.7) and Lemma 4.4, we obtain
, , s (8 _ )\)(7"_1) ~
) - 06| < [ - ot - [ 2B 050000
K “s— D4 —
TR b A0 - a0

< (|E| s" lma + 1) eCop(s)

R L ) - s 4
< [(|E| s ma + 1) <1 + —i{l_ylc(f) C’4 ep(s),

where v = v(r) is a constant, then ‘ﬁ(s) — B(s)| < Cyep(s), which completes the proof of the
theorem. O

5. Illustrative Examples

This section contains some examples to illustrate the usefulness of our main results.
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Example 5.1. Consider the HFlg — DE
VT +1B(s)| + [D*7 Bs)

1/3,2
5.1) %Mﬁmgz4&%ﬂ(LHM@uﬁw“%MgD7SGJZOJL
D71 =38(8) +28 (3) + V5B ()
for different values of
q€ {lnéz), 1 @} c (0,1).
Here, for 3, 3 € [0, 00),
05,8 8) = ol sl
and r = € (0,1), v = 2 € [0,1], L=rtq-r= 3t3-3(3) =% a=3a=2,

az =5, v| = g e€J, v = % el vy = 4 € J. Using this data in Eq. (3.2), we have

== [0 a ] = [r - (507 w2

-1

i=1
~0.17341, ¢ =202
~ ¢ —0.17477, q =73,
~0.17560, q= Y2

Clearly, v is continuous and condition (H1) is satisfied with

wwﬁhmn_%sw(Jiwmww@D

and By(s) = 48@%7 Bo*(s) = W’ Bi(s) = Ba(s) = 4865%, 51*(5) = BQ*(S) = @a for
s € J. In addition, for §;, 5; € [0,00), i =1,2 and s € J, we have

W@&ﬁa—wwﬁ@}_gydwlﬁﬂ+M—@D
Thus, condition (H2) is satisfied with K1 = K = W' We see that (3.9) holds with

2| ~ 0.17341, 0.17477, 0.17560,
() 1 Vo7

when ¢ = ==, 3, ~5—, respectively. Table 1 shows the numerical results of I'4(¢), = and A
for problem (5.1) with given values for 0 < ¢ < 1. One can see 2D plot of these variables for
different cases of ¢ in Figures la, 1b and 2 respectively. Now, by employing Eq. (3.13), we
obtain

0.0010, ¢ = 22

r, (2 m B
- <48641~471) Fqéj_%) (‘E| Zaivz/H% L4 21/2) ~ ¢ 0.0012, ¢=

0.0014, q =

<1

cr\[:""i
TN ot
|

So it follows from Theorem 3.9 that the problem (5.1) has at least one solution on J.
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TABLE 1. Numerical results of T'y(¢), 2 and A for Problem (5.1) for three cases of g

in Example 5.1.

/a7
g= @ a=} 5
n | Tq(0) = A Ty () = A Ty () = A
1| 1.0408 —0.1731 0.0009 1.0152 —0.1724 0.0008 0.8344 —0.1672 0.0003
2| 1.0488 —0.1734 0.0010 1.0584 —0.1737 0.0010 0.9009 —0.1690 0.0005
3| 1.0499 —0.1734 0.0010 1.0773 —0.1742 0.0011 0.9444 —0.1703 0.0006
4 | 1.05600 —0.1734 0.0010 1.0861 —0.1745 0.0012 0.9759 —0.1712 0.0007
5| 1.0500 —0.1734 0.0010 1.0905 —0.1746 0.0012 0.9999 —0.1719 0.0008
6 | 1.0501 —0.1734 0.0010 1.0926 —0.1747 0.0012 1.0189 —0.1725 0.0009
7 | 1.0501 —0.1734 0.0010 1.0936 —0.1747 0.0012 1.0343 —0.1729 0.0009
8 | 1.0501 —0.1734 0.0010 1.0942 —0.1748 0.0012 1.0469 —0.1733 0.0010
14 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.0903 —0.1746 0.0012
15 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.0944 —0.1748 0.0012
16 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.0979 —0.1749 0.0013
17 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.1009 —0.1750 0.0013
18 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.1035 —0.1750 0.0013
19 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.1058 —0.1751 0.0013
20 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.1078 —0.1752 0.0013
25 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.1146 —0.1754 0.0014
26 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.1155 —0.1754 0.0014
27 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.1163 —0.1754 0.0014
28 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.1169 —0.1755 0.0014
29 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.1175 —0.1755 0.0014
30 | 1.0501 —0.1734 0.0010 1.0947 —0.1748 0.0012 1.1181 —0.1755 0.0014
115 ‘ -0.167
" -0.168 Igjl"/(;)/5

Ty(0)

FIGURE 1. Graphical representation of I'q(¢) and = for Problem (5.1) for different values

—8—q=In(2)/5
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of ¢ in Example 5.1.
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In the next example, we show our results for changes in fractional order r.

Example 5.2. In the problem (5.1), by choosing

reflh 3 co.

111
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%107
:

14

—— g=In(2)/5
—O—q=112

q=2""13

FI1GURE 2. Graphical representation of A for Problem (5.1) with three different
values for ¢ in Example 5.1.

g=2e(0,1),7=2€01,

17 _1 7 _1
24 =% 200 "= %
b=r+y—1ry= %, 7"2%, 1—{= %, 7“:%7
8 -4 o=t
we consider the HFIg — DE:
prifsgey = YTHRORPEO]
(5.2) Y ases+34 (1+15(s)|+[D5 7B (s)]) o

Dy, "B(1) =36 (3) +28 (3) + V58 (1) -
By placing this data in Eq. (3.2), we have

- {F3/7(€) - gai vf_l]l = [F3/7 (2) - (3 (6)7° 4o (3)5/6_1”1

—0.1878, r
—0.1746, r
—0.1633, r

[1]

12
I

1
8
1
27
8
9

Table 2 shows the numerical results of I'3/;(£), = and A for problem (5.1) with given values
for 0 < r < 1. One can see 2D plot of these variables for different cases of r in Figures 3a, 3b,
respectively. In Example 5.1, we show that the condition (H2) is satisfied with K; = e%,

Ky, = i. In addition, by applying Eq. (3.13), we obtain

0.0030, =4

~ K By (0,7 U ’ 8
A= ( L > el |=] qu{”fl +15 | =< 0.0012, r= %, <1

1— KQ F3/7(7') — 8

v 0.0010, r =g,

It follows from Theorem 3.9 that the problem (5.2) has a unique solution on J. For s € J,
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TABLE 2. Numerical results of T'y(¢), Z and A for Problem (5.

113

2) for three cases of r in

Example 5.2.
r=% r=3% r=%
n | Tg(0) = A Iy (0) = A Ly (0) = A
1| 1.0755 —0.1836 0.0020 1.0279 —0.1728 0.0009 1.0035 —0.1630 0.0008
2 | 1.1480 —0.1861 0.0026 1.0642 —0.1738 0.0011 1.0107 —0.1631 0.0009
3| 1.1761 —0.1871 0.0029 1.0782 —0.1743 0.0011 1.0135 —0.1632 0.0009
4 | 1.1878 —0.1875 0.0030 1.0839 —0.1744 0.0012 1.0146 —0.1633 0.0010
5 | 1.1927 —0.1877 0.0030 1.0863 —0.1745 0.0012 1.0151 —0.1633 0.0010
6 | 1.1947 —0.1878 0.0030 1.0873 —0.1745 0.0012 1.0153 —0.1633 0.0010
7 1 1.1956 —0.1878 0.0030 1.0878 —0.1746 0.0012 1.0154 —0.1633 0.0010
8 | 1.1960 —0.1878 0.0030 1.0880 —0.1746 0.0012 1.0154 —0.1633 0.0010
9 | 1.1962 —0.1878 0.0030 1.0881 —0.1746 0.0012 1.0154 —0.1633 0.0010
10 | 1.1963 —0.1878 0.0030 1.0881 —0.1746 0.0012 1.0154 —0.1633 0.0010
11 | 1.1963 —0.1878 0.0030 1.0881 —0.1746 0.0012 1.0154 —0.1633 0.0010
12 | 1.1963 —0.1878 0.0030 1.0881 —0.1746 0.0012 1.0154 —0.1633 0.0010
13 | 1.1963 —0.1878 0.0030 1.0881 —0.1746 0.0012 1.0154 —0.1633 0.0010
-0.16 as5p20%
-0.165 3
017 25
W15 VY9 <2 —8—r-18
—0—r=12
=819
-0.18 15
r-m—yy
—o—r=12
=89

-0

1185 [

-0.19

10 15 20

25

FIGURE 3. Graphical representation of = and A for Problem (5.

of r in Example 5.2.

let ¢(s) = s. Since

Tyy0(8) = 3,0 /18(8 = )5 Adgjz
2.1103, r =4, 5.8557,
(5.3) ~Q 24221, r=1 << 5.2126,
2.7192, r =38, 4.2735,
condition (H3) is satisfied with C, = e

—_
—
—

One can see 2D plot of variables

2) with different values

1
r=z
7“:i7 NiSTO = SO(S)
2 Ty (r) v ’
'I"Zg,

L ) To- Table 3 shows these numerical results.

and A for different cases of r in Figures 3a and 3b

respectively. One can see 2D plot of variables Zj ¢(s) and Cyp(s) for different cases of r in
Figures 4a and 4b respectively. Furthermore, Figures 5a, 5b and 5c compare the variables
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TABLE 3. Numerical results of Z3,.¢(s), Iy (r) and Cyp(s) for Problem (5.2) for three
cases of r in Example 5.2.

r=1 r=1 r=t
s [ T0() To() Copls)  Tioo(s) Tap(r) Cepls)  Tie(s) Tar(r) Copls)
1.00 0.9676 5.4648 2.9278 0.8563 1.5347 2.6063 0.7342 1.0530 2.1367
1.10 1.0771 5.4648 3.2206 0.9879 1.5347 2.8669 0.8791 1.0530 2.3504
1.20 1.1878 5.4648 3.5134 1.1257 1.5347 3.1276 1.0361 1.0530 2.5641
1.30 1.2998 5.4648 3.8062 1.2693 1.56347 3.3882 1.2052 1.0530 2.7778
1.40 1.4128 5.4648 4.0990 1.4185 1.5347 3.6488 1.3863 1.0530 2.9914
1.50 1.5268 5.4648 4.3918 1.5732 1.56347 3.9094 1.5792 1.0530 3.2051
1.60 1.6418 5.4648 4.6846 1.7331 1.5347 4.1701 1.7840 1.0530 3.4188
1.70 1.7577 5.4648 4.9773 1.8981 1.56347 4.4307 2.0004 1.0530 3.6324
1.80 1.8744 5.4648 5.2701 2.0680 1.5347 4.6913 2.2285 1.0530 3.8461
1.90 1.9919 5.4648 5.5629 2.2427 1.56347 4.9520 2.4681 1.0530 4.0598
2.00 2.1103 5.4648 5.8557 2.4221 1.5347 5.2126 2.7192 1.0530 4.2735

~

Zip(s), q

—8—r-18
1 / +:_m —8—=1/8
_ r ——r=112

r=8/9
‘ r=8/9

1 12 14 16 18 14 16 18 2 22
se(l,2] se(l,2]

(a) Zge(s) (B) Coop(s)

~
NS
Ny
-
~

FIGURE 4. Graphical representation of Z; ¢(s) and Cy,¢(s) for problem (5.2) with different
values of r for s € J in Example 5.2.

for different cases of r and s € J in Problem (5.2) and show that the inequality (5.3) is
established. It follows from Theorem 4.6 that the problem (5.2) is U-H-R stable.

Conclusion

The fractional quantum derivative called a Hilfer fractional ¢-derivative involving Riemann-
Liouville and Caputo type fractional g-derivatives, HFlg — DE, has been investigated in this
work in details. The investigation of this particular equation provides us with a powerful
tool in modeling most scientific phenomena without the need to remove most parameters
which have an essential role in the physical interpretation of the studied phenomena. The
problem (1.1) has been studied under some bondary conditions. The stability analysis show
a benefit results about the proble. Two examples have been provided to support our results’
validity and applicability in fields of physics and engineering.
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(A)rz% (B)r=3 (C)ng

FIGURE 5. Compare two variables Z; ¢(s) and Cy¢(s) for problem (5.2) when ¢ = 2 and

(A)r=1 B r=1C)r=5
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