Research Paper

DENSITY OF BALANCED CONVEX-POLYNOMIALS IN $L^{p}(\mu)$

GHOLAM REZA BASERI AND ALI ILOON KASHKOOLY*

Abstract

A bounded linear operator T on a locally convex space X is balanced convexcyclic if there exists a vector $x \in X$ such that the balanced convex hull of $\operatorname{orb}(T, x)$ is dense in X.A balanced convex-polynomial is a balanced convex combination of monomials $\left\{1, z, z^{2}, z^{3}, \ldots\right\}$.In this paper we prove that the balanced convex-polynomials are dense in $L^{p}(\mu)$ when $\mu([-1,1])=0$. Our results are used to characterize which multiplication operators on various real Banach spaces are balanced convex-cyclic. Also, it is shown for certain multiplication operators that every nonempty closed invariant balanced convex-set is a closed invariant subspace.

MSC(2010): Primary 47A16; Secondary 52A07. Keywords: Balanced convex-cylic operators,Balanced Convex set, Convex hull.

1. Introduction and Background

Let X be a locally convex space and let $B(X)$ denote the algebra of all continuous linear operators on X and μ be a compactly supported positive regular Borel measure on \mathbb{R}. Convexcyclic operators were introduced by Rezaei in [4]. If S be a subset of the vector space X then the balanced hull of S, that is shown by $b a(S)$, is defined in [1].

We will say that S is a balanced set whenever $S=b a(S)$. The balanced convex hull of S, that is shown by $b c(S)$, is defined in [1]. Let $\mathcal{B C P}$ denote the balanced convex hull of the set of monomials $\left\{1, z, z^{2}, z^{3}, \ldots\right\}$ within the vector space of polynomials.Thus,

$$
\mathcal{B C P}=\left\{\sum_{k=0}^{n} a_{k} z^{k}: a_{k} \in \mathbb{C}, \sum_{k=0}^{n}\left|a_{k}\right| \leq 1\right\} .
$$

The elements of $\mathcal{B C P}$ are called balanced convex - polynomials. Hence the balanced convex hull of an orbit is

$$
b c(\operatorname{orb}(T, x)))=\{p(T) x: p \in \mathcal{B C P}\} .
$$

Definition 1.1. An operator $T \in B(X)$ is called balanced convex-cyclic if there exists a vector $x \in X$ such that the balanced convex hull of $\operatorname{orb}(T, x)$ is dense in X and such a vector x is said to be a balanced convex-cyclic vector for T.

Balanced convex-cyclic operators were studied in [1]. In this paper we will determine when the balanced convex-polynomials are dense in $L^{p}(\mu)$. Also we will show that the nonempty closed invariant balanced convex-sets for the operator M_{x} of multiplication by x on $L^{2}{ }_{\mathbb{R}}(\mu)$ are the same as the closed invariant subspaces of M_{x} if and only if $\mu([-1,1])=0$. We consider the

[^0]balanced convex-cyclicity of multiplication operator M_{x} on $L^{2} \mathbb{R}(\mu)$ as an one of our results. In the next section we will investigate the density of balanced convex-set.

2. Basic theorems and preliminaries

Proposition 2.1. (Balanced convex-polynomials)

1. A polynomial p is a balanced convex -polynomial if and only if

$$
\sum_{k=0}^{n} \frac{1}{k!}\left|p^{(k)}(0)\right| \leq 1
$$

2. If p is a balanced convex-polynomial, then $p(\bar{D}) \subseteq \bar{D}$.
3. If $p(z)$ is a convex-polynomial, then $p\left(e^{i \theta} z\right)$ is a balanced convex-polynomial.
4. The composition and multiplication of balanced convex-polynomials are balanced convexpolynomial.
Theorem 2.2. (Dense Hahn-Banach Criterion) Let X be a locally convex space over the real or complex numbers and let S be a nonempty subset of X. Then the balanced convex hull of S is dense in X if and only if for every nonzero continuous linear functional f on X we have that

$$
\sup |f(S)|=+\infty
$$

Proof. See ([1], propositin2.2).
Corollary 2.3. (Hahn-Banach characterization of balanced convex-cyclicity) Let $T \in L(X)$ and $x \in X$. Then the following are equivalent:

1. The vector x is a balanced convex-cyclic vector for T.
2. For every nonzero bounded linear functional f on X we have

$$
\sup _{n}\left|f\left(T^{n} x\right)\right|=+\infty .
$$

3. For every nonzero bounded linear functional f on X we have

$$
\sup _{p \in \mathcal{B C P}}\{|f(p(T) x)|\}=+\infty
$$

Proof. See ([1], Theorem2.3).
We will use the above result to determine when the balanced convex-polynomials are dense in certain function spaces. If $S \subseteq \mathbb{R}$, then let $M_{c}(S)$ be the space of all real compactly supported regular Borel measures carried by S with finite total variation.
Corollary 2.4. The followings hold:

1. For $\mu \in M_{c}^{+}(\mathbb{R})$ and $1 \leq p<\infty$, we have that the balanced convex-polynomials are dense in $L^{p}(\mu)$ if and only if for every nonzero $f \in L^{q}(\mu)$, where $\frac{1}{p}+\frac{1}{q}=1$, we have

$$
\sup _{n \geq 1}\left|\int x^{n} f(x) d \mu\right|=+\infty .
$$

2. If $\mu \in M_{c}{ }^{+}(\mathbb{R})$, then the balanced convex-polynomials are weak* - dense in $L^{\infty}(\mu)$ if and only if for every nonzero $f \in L^{1}(\mu)$ we have $\sup _{n \geq 1}\left|\int x^{n} f(x) d \mu\right|=+\infty$.
Proof. This follows from ([3], Corollary1) and Theorem(2.2).

Proposition 2.5. If $b>a \geq 1$ and $f \in L^{1}(a, b)$ and $f(x) \leq \delta<0$ for a.e. $x \in(a, b)$, then

$$
\int_{a}^{b} x^{n} f(x) d x \rightarrow-\infty \text { as } n \rightarrow \infty
$$

Proof. Since $f(x) \leq \delta<0$ on (a, b) and $x^{n} \geq 0$, then $x^{n} f(x) \leq \delta x^{n}$ on (a, b).So we have

$$
\int_{a}^{b} x^{n} f(x) d x \leq \delta \int_{a}^{b} x^{n} d x=\frac{\delta}{n+1}\left(b^{n+1}-a^{n+1}\right) \rightarrow-\infty \text { as } n \rightarrow \infty
$$

Corollary 2.6. If $a<b \leq-1$ or $b>a \geq 1$ and $f \in L^{1}(a, b)$, then

$$
\left|\int_{a}^{b} x^{n} f(x) d x\right| \rightarrow+\infty \text { as } n \rightarrow+\infty
$$

Proof. This follows from ([3], Propsition7) and Proposition(2.5).
Theorem 2.7. If μ is a finite real measure with compact support in $(-\infty,-1] \cup[1,+\infty)$ that is not supported on sets $\{-1\}$ and $\{1\}$, then $\sup _{n \geq 1}\left|\int x^{n} d \mu\right|=+\infty$.
Proof. If support (μ) lies in $(-\infty,-1]$, then it is proved in ([3],Theorem14). Suppose that $\operatorname{support}(\mu)$ lies in $[1,+\infty)$. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ by $F(x)=\mu([x,+\infty))$. Since μ is compact support we may choose $b>1$ such that μ is the zero measure on $[b,+\infty)$, thus $F(b)=\mu([b,+\infty))=0$ and $\mu(\{b\})=0 . \mu$ is not the zero measure on $(1, b)$. Thus F is not almost everywhere equal to zero on $(1, b)$. Since x^{n} is continuous we may use integration by parts to give

$$
\begin{aligned}
\int x^{n} d \mu & =\int_{[1, b]} x^{n} d \mu \\
& =\int_{\{1, b\}} x^{n} d \mu+\int_{(1, b)} x^{n} d \mu \\
& =\mu(\{1\})+b^{n} \mu(\{b\})+\int_{1}^{b} x^{n} d F(x) \\
& =\mu(\{1\})+b^{n} F(b)-F(1)-\int_{1}^{b} n x^{n-1} F(x) d x \\
& =\mu(\{1\})+0-F(1)-\int_{1}^{b} n x^{n-1} F(x) d x .
\end{aligned}
$$

Since $F \in L^{\infty}(1, b)$ and F is nonzero on a set of positive Lebesgue measure in $(1, b)$ then, by Corollary (2.6) we have sup $\left|\int x^{n} d \mu\right|=\sup \left|\int n x^{n-1} F(x) d x\right|=+\infty$. Suppose that $\operatorname{support}(\mu)$ lies in $(-\infty,-1] \cup[1,+\infty)$. Let $F: \mathbb{R} \xrightarrow{n} \mathbb{R}$ by

$$
F(x)= \begin{cases}\mu([x,+\infty)), & x \geq 1 \\ \mu((-\infty, x]), & x \leq-1 \\ 0, & o . w .\end{cases}
$$

Since μ is compact support we may choose an $a<-1$ and a $b>1$ such that $\mu((-\infty, a])=0$ and $\mu([b,+\infty))=0$, so $\mu((a,-1) \cup(1, b)) \neq 0$. Thus $F(a)=0, F(b)=0, \mu(\{a\})=0$ and $\mu(\{b\})=0 . \mu$ is not the zero measure on $(a,-1)$ and $(1, b)$. Thus F is not almost everywhere
equal to zero on $(a,-1) \cup(1, b)$. Since x^{n} is continuous we may use integration by parts to give

$$
\begin{aligned}
\int x^{n} d \mu= & a^{n} \mu(\{a\})+(-1)^{n} \mu(\{-1\})+\mu(\{1\})+b^{n} \mu(\{b\})+\int_{a}^{-1} x^{n} d F+\int_{1}^{b} x^{n} d F \\
= & (-1)^{n} \mu(\{-1\})+\mu(\{1\})+(-1)^{n} F(-1)-a^{n} F(a) \\
& -\int_{a}^{-1} n x^{n-1} F(x) d x+b^{n} F(b)-F(1)-\int_{1}^{b} n x^{n-1} F(x) d x \\
= & (-1)^{n} \mu(\{-1\})+\mu(\{1\})+(-1)^{n} F(-1)-F(1) \\
& -\int_{a}^{-1} n x^{n-1} F(x) d x-\int_{1}^{b} n x^{n-1} F(x) d x .
\end{aligned}
$$

Since $F \in L^{\infty}(a,-1)$ and $F \in L^{\infty}(1, b)$ and F is nonzero on a set of positive Lebesgue measure so we have $\inf _{n \geq 1} \int_{a}^{-1} n x^{n-1} F(x) d x=-\infty$, thus $\inf _{n \geq 1}\left(-\int_{a}^{-1} n x^{n-1} F(x) d x\right)=k$. Also we have $\sup _{n \geq 1} \int_{1}^{b} n x^{n-1} F(x) d x=+\infty$, thus $\inf _{n \geq 1}\left(-\int_{1}^{b} n x^{n-1} F(x) d x\right)=-\infty$. Hence we have $\inf _{n \geq 1} \int x^{n} d \mu=-\infty$ and $\sup _{n \geq 1}\left|\int x^{n} d \mu\right|=+\infty$.
Corollary 2.8. Let μ be a finite positive regular Borel measure with compact support on the real line, the followings are equivalent:

1. The balanced convex-polynomials are weak ${ }^{*}$ dense in $L^{\infty}(\mu)$.
2. The balanced convex-polynomials are dense in $L^{p}(\mu)$ for all $1 \leq p<\infty$.
3. For any $f \in L^{p}(\mu)$ with $|f|>0 \mu$ a.e. the set $\{p(x) f(x): p \in \mathcal{B C P}\}$ is dense in $L^{p}(\mu)$ when $1 \leq p<\infty$ and weak k^{*} dense in $L^{\infty}(\mu)$.
4. $\mu([-1,1])=0$.

Proof. This follows from Corollary(2.4) and Theorem(2.7).

3. Balanced convex-cyclic multiplication operators and invariant balanced CONVEX-SETS

Let $L^{2}{ }_{\mathbb{R}}(\mu)$ be the real Hilbert space of all real-valued Lebesgue measurable functions that are square integrable with respect to μ.(See [2]). Also let $M_{x, \mu}$ denote the operator of multiplication by the independent variable x acting on $L^{2}{ }_{\mathbb{R}}(\mu)$.

In this section we determine when $M_{x, \mu}$ is balanced convex-cyclic and characterize its balanced convex-cyclic vectors. We also determine the invariant balanced convex-sets for $M_{x, \mu}$ where $M_{x, \mu}$ is balanced convex-cyclic.

The next theorem will charactrize the balanced convex-cyclicity of the multiplication operator $M_{x, \mu}$.

Theorem 3.1. Let μ is a positive finite regular Borel measure with compact support in \mathbb{R} and $M_{x, \mu}$ is the multiplication operator on $L^{2} \mathbb{R}^{(\mu)}$, then we have:

1. $M_{x, \mu}$ is balanced convex-cyclic if and only if $\mu([-1,1])=0$.
2. If $M_{x, \mu}$ is balanced convex-cyclic, then the balanced convex-cyclic vectors for $M_{x, \mu}$ are the same as its cyclic vectors.

Proof. 1. If $M_{x, \mu}$ is balanced convex-cyclic, then from item 2 of proposition(2.1), we have $\mu([-1,1])=0$. Conversely, if $\mu([-1,1])=0$, then it follows from item 2 of corollary (2.8) that the balanced convex-polynomials are dense in $L^{2}{ }_{\mathbb{R}}(\mu)$, which implies that $M_{x, \mu}$ is balanced convex-cyclic and the function $f(x)=1$ is a balanced convex-cyclic vector for $M_{x, \mu}$.
2. Recall that the cyclic vector for $M_{x, \mu}$ are those functions $f \in L^{2} \mathbb{R}(\mu)$ that satisfy
$|f|>0 \mu$ a.e. So, if f is a balanced convex-cyclic vector for $M_{x, \mu}$, then it is also a cyclic vector and thus must satisfy $|f|>0 \mu$ a.e. Conversely, suppose that $M_{x, \mu}$ is balanced convexcyclic and $f \in L^{2} \mathbb{R}^{(}(\mu)$ satisfies $|f|>0 \mu$ a.e. Since $M_{x, \mu}$ is balanced convex-cyclic we know from 1 that $\mu([-1,1])=0$ and since $|f|>0 \mu$ a.e., corollary(2.8) item 3 says exactly that f is a balanced convex-cyclic vector for $M_{x, \mu}$.

Now we characterize the invariant closed balanced convex-sets for the operator $M_{x, \mu}$ when $\mu([-1,1])=0$.

Theorem 3.2. If $\mu \in M_{c}{ }^{+}(\mathbb{R})$, then the followings are equivalent:

1. The nonempty closed invariant balanced convex-sets for the multiplication operator $M_{x, \mu}$ on $L^{2}{ }_{\mathbb{R}}(\mu)$ are the same as the closed invariant subspaces for $M_{x, \mu}$.
2. $\mu([-1,1])=0$.

Proof. (1) \Rightarrow (2) To show that $\mu([-1,1])=0$, suppose that $\mu([-1,1])>0$. We will obtain a contradiction. Let $S=\left\{f \in L^{2}{ }_{\mathbb{R}}(\mu):|f(x)| \leq 1\right.$ for μ a.e. $\left.x \in[-1,1]\right\}$. S is a closed balanced convex-set in $L^{2} \mathbb{R}^{2}(\mu)$ that is invariant under $M_{x, \mu}$. By our assumption that $\mu([-1,1])>0, S$ is nonzero. Also by assumption $1, S$ is a subspace. But clearly S is not a subspace unless it is the zero subspace.This gives the contradiction and so $\mu([-1,1])=0$.
$(2) \Rightarrow(1)$ Recall that a nonempty balanced convex-set is a subspace if and only if it is closed under scalar multiplication. So, it suffices to show that it is invariant under multiplication by nonzero scalars. So, let $A \neq\{0\}$ be a closed balanced convex-set in $L^{2} \mathbb{R}(\mu)$ that is invariant under $M_{x, \mu}$. Let $f \in A \backslash\{0\}$, and let $r \in \mathbb{R} \backslash\{0\}$. Let $\vartheta=|f|^{2} d \mu$ and consider the measure ϑ and the space $L^{2}{ }_{\mathbb{R}}(\vartheta)$. Since $\mu([-1,1])=0$, it follows that $\vartheta([-1,1])=0$, and by item 4 of corollary (2.8), we know that the balanced convex-polynomials are dense in $L^{2}{ }_{\mathbb{R}}(\vartheta)$. Hence there are nonzero balanced convex-polynomials $\left\{p_{n}\right\}_{n=1}^{\infty}$ such that $p_{n} \rightarrow r$ in $L^{2} \mathbb{R}^{(}(\vartheta)$. So $\int\left|p_{n} f-r f\right|^{2} d \mu=\int\left|p_{n}-r\right|^{2}|f|^{2} d \mu=\int\left|p_{n}-r\right|^{2} d \vartheta \rightarrow 0$ as $n \rightarrow \infty$ and so $p_{n} f \rightarrow r f$ in $L^{2} \mathbb{R}^{(}(\mu)$. Now since A is balanced convex and invariant under $M_{x, \mu}$ and $f \in A$ so $p_{n} f \in A$ for every n and $p_{n} f \rightarrow r f$ in $L^{2}{ }_{\mathbb{R}}(\mu)$. Since A is a closed set, $r f \in A$. Thus A is invariant under scalar multiplication. Hence A is a subspace.

References

[1] GH.Baseri,A.I.Kashkooli and H.Rezaei,On the balanced convex hull of operator's orbit,Iran J Sci Technol Trans Sci.46(2022)659-665.
[2] J. B. Conway, A Course in Functional Analysis, 2nd Editions, Springer-Verlag, 1990.
[3] N.S. Feldman and P. McGuire, Convex Stone-Weierstrass Theorems and Invariant Convex Sets, Rocky Math. 49 (2019), no. 8, 2587-2611.
[4] H.Rezaei,On the convex hull generated by orbit of operators,Linear Algebra and its Applications,438(2013),4190-4203.
(Gholam Reza Baseri) Department of Mathematics, Farhangian University, Shiraz, Iran.
Email address: ghhbaseri@gmail.com
(Ali Iloon Kashkooly) Department of Mathematics, College of Sciences, Yasouj University, Yasouj-75914-74831, Iran

Email address: kashkooly@yu.ac.ir

[^0]: Date: Received: March 1, 2022, Accepted: May 1, 2023.
 *Corresponding author.

