

Research Paper

DENSITY OF BALANCED CONVEX-POLYNOMIALS IN $L^p(\mu)$

GHOLAM REZA BASERI AND ALI ILOON KASHKOOLY*

ABSTRACT. A bounded linear operator T on a locally convex space X is balanced convexcyclic if there exists a vector $x \in X$ such that the balanced convex hull of orb(T, x) is dense in X. A balanced convex-polynomial is a balanced convex combination of monomials $\{1, z, z^2, z^3, ...\}$. In this paper we prove that the balanced convex-polynomials are dense in $L^p(\mu)$ when $\mu([-1,1]) = 0$. Our results are used to characterize which multiplication operators on various real Banach spaces are balanced convex-cyclic. Also, it is shown for certain multiplication operators that every nonempty closed invariant balanced convex-set is a closed invariant subspace.

MSC(2010): Primary 47A16; Secondary 52A07.

Keywords: Balanced convex-cylic operators, Balanced Convex set, Convex hull.

1. Introduction and Background

Let X be a locally convex space and let B(X) denote the algebra of all continuous linear operators on X and μ be a compactly supported positive regular Borel measure on \mathbb{R} . Convexcyclic operators were introduced by Rezaei in [4]. If S be a subset of the vector space X then the balanced hull of S, that is shown by ba(S), is defined in [1].

We will say that S is a balanced set whenever S = ba(S). The balanced convex hull of S, that is shown by bc(S), is defined in [1]. Let \mathcal{BCP} denote the balanced convex hull of the set of monomials $\{1, z, z^2, z^3, ...\}$ within the vector space of polynomials. Thus,

$$\mathcal{BCP} = \Big\{ \sum_{k=0}^{n} a_k z^k : a_k \in \mathbb{C}, \sum_{k=0}^{n} |a_k| \le 1 \Big\}.$$

The elements of \mathcal{BCP} are called *balanced convex – polynomials*. Hence the balanced convex hull of an orbit is

$$bc(orb(T,x))) = \{p(T)x : p \in \mathcal{BCP}\}.$$

Definition 1.1. An operator $T \in B(X)$ is called balanced convex-cyclic if there exists a vector $x \in X$ such that the balanced convex hull of orb(T, x) is dense in X and such a vector x is said to be a balanced convex-cyclic vector for T.

Balanced convex-cyclic operators were studied in [1]. In this paper we will determine when the balanced convex-polynomials are dense in $L^p(\mu)$. Also we will show that the nonempty closed invariant balanced convex-sets for the operator M_x of multiplication by x on $L^2_{\mathbb{R}}(\mu)$ are the same as the closed invariant subspaces of M_x if and only if $\mu([-1, 1]) = 0$. We consider the

Date: Received: March 1, 2022, Accepted: May 1, 2023.

^{*}Corresponding author.

balanced convex-cyclicity of multiplication operator M_x on $L^2_{\mathbb{R}}(\mu)$ as an one of our results. In the next section we will investigate the density of balanced convex-set.

2. Basic theorems and preliminaries

Proposition 2.1. (Balanced convex-polynomials)

1. A polynomial p is a balanced convex -polynomial if and only if

$$\sum_{k=0}^{n} \frac{1}{k!} |p^{(k)}(0)| \le 1.$$

- 2. If p is a balanced convex-polynomial, then $p(\overline{D}) \subseteq \overline{D}$.
- 3. If p(z) is a convex-polynomial, then $p(e^{i\theta}z)$ is a balanced convex-polynomial.
- 4. The composition and multiplication of balanced convex-polynomials are balanced convexpolynomial.

Theorem 2.2. (Dense Hahn-Banach Criterion) Let X be a locally convex space over the real or complex numbers and let S be a nonempty subset of X. Then the balanced convex hull of S is dense in X if and only if for every nonzero continuous linear functional f on X we have that

$$\sup |f(S)| = +\infty.$$

Proof. See ([1], propositin 2.2).

Corollary 2.3. (Hahn-Banach characterization of balanced convex-cyclicity) Let $T \in L(X)$ and $x \in X$. Then the following are equivalent:

- 1. The vector x is a balanced convex-cyclic vector for T.
- 2. For every nonzero bounded linear functional f on X we have

$$\sup_{n} \left| f(T^n x) \right| = +\infty.$$

3. For every nonzero bounded linear functional f on X we have

$$\sup_{p \in \mathcal{BCP}} \left\{ \left| f(p(T)x) \right| \right\} = +\infty.$$

Proof. See ([1], Theorem2.3).

We will use the above result to determine when the balanced convex-polynomials are dense in certain function spaces. If $S \subseteq \mathbb{R}$, then let $M_c(S)$ be the space of all real compactly supported regular Borel measures carried by S with finite total variation.

Corollary 2.4. The followings hold:

1. For $\mu \in M_c^+(\mathbb{R})$ and $1 \leq p < \infty$, we have that the balanced convex-polynomials are dense in $L^p(\mu)$ if and only if for every nonzero $f \in L^q(\mu)$, where $\frac{1}{p} + \frac{1}{q} = 1$, we have

$$\sup_{n\geq 1} \left| \int x^n f(x) d\mu \right| = +\infty.$$

2. If $\mu \in M_c^+(\mathbb{R})$, then the balanced convex-polynomials are weak^{*} - dense in $L^{\infty}(\mu)$ if and only if for every nonzero $f \in L^1(\mu)$ we have $\sup_{n \ge 1} \left| \int x^n f(x) d\mu \right| = +\infty$.

Proof. This follows from ([3], Corollary1) and Theorem (2.2).

Proposition 2.5. If $b > a \ge 1$ and $f \in L^1(a, b)$ and $f(x) \le \delta < 0$ for a.e. $x \in (a, b)$, then

$$\int_{a}^{b} x^{n} f(x) dx \to -\infty \ as \ n \to \infty.$$

Proof. Since $f(x) \le \delta < 0$ on (a, b) and $x^n \ge 0$, then $x^n f(x) \le \delta x^n$ on (a, b). So we have

$$\int_{a}^{b} x^{n} f(x) dx \leq \delta \int_{a}^{b} x^{n} dx = \frac{\delta}{n+1} (b^{n+1} - a^{n+1}) \to -\infty \text{ as } n \to \infty.$$

Corollary 2.6. If $a < b \leq -1$ or $b > a \geq 1$ and $f \in L^1(a, b)$, then

$$\left|\int_{a}^{b} x^{n} f(x) dx\right| \to +\infty \text{ as } n \to +\infty.$$

Proof. This follows from ([3], Propsition7) and Proposition(2.5).

Theorem 2.7. If μ is a finite real measure with compact support in $(-\infty, -1] \cup [1, +\infty)$ that is not supported on sets $\{-1\}$ and $\{1\}$, then $\sup_{n\geq 1} |\int x^n d\mu| = +\infty$.

Proof. If $support(\mu)$ lies in $(-\infty, -1]$, then it is proved in ([3], Theorem14). Suppose that $support(\mu)$ lies in $[1, +\infty)$. Let $F : \mathbb{R} \to \mathbb{R}$ by $F(x) = \mu([x, +\infty))$. Since μ is compact support we may choose b > 1 such that μ is the zero measure on $[b, +\infty)$, thus $F(b) = \mu([b, +\infty)) = 0$ and $\mu(\{b\}) = 0$. μ is not the zero measure on (1, b). Thus F is not almost everywhere equal to zero on (1, b). Since x^n is continuous we may use integration by parts to give

$$\int x^n d\mu = \int_{[1,b]} x^n d\mu$$

= $\int_{\{1,b\}} x^n d\mu + \int_{(1,b)} x^n d\mu$
= $\mu(\{1\}) + b^n \mu(\{b\}) + \int_1^b x^n dF(x)$
= $\mu(\{1\}) + b^n F(b) - F(1) - \int_1^b nx^{n-1} F(x) dx$
= $\mu(\{1\}) + 0 - F(1) - \int_1^b nx^{n-1} F(x) dx$.

Since $F \in L^{\infty}(1, b)$ and F is nonzero on a set of positive Lebesgue measure in (1, b) then, by Corollary(2.6) we have $\sup_{n} |\int x^{n} d\mu| = \sup_{n} |\int nx^{n-1}F(x)dx| = +\infty$. Suppose that $support(\mu)$ lies in $(-\infty, -1] \cup [1, +\infty)$. Let $F : \mathbb{R} \to \mathbb{R}$ by

$$F(x) = \begin{cases} \mu([x, +\infty)), & x \ge 1\\ \mu((-\infty, x]), & x \le -1\\ 0, & o.w. \end{cases}$$

Since μ is compact support we may choose an a < -1 and a b > 1 such that $\mu((-\infty, a]) = 0$ and $\mu([b, +\infty)) = 0$, so $\mu((a, -1) \cup (1, b)) \neq 0$. Thus $F(a) = 0, F(b) = 0, \mu(\{a\}) = 0$ and $\mu(\{b\}) = 0$. μ is not the zero measure on (a, -1) and (1, b). Thus F is not almost everywhere

equal to zero on $(a, -1) \cup (1, b)$. Since x^n is continuous we may use integration by parts to give

$$\begin{split} \int x^n d\mu &= a^n \mu(\{a\}) + (-1)^n \mu(\{-1\}) + \mu(\{1\}) + b^n \mu(\{b\}) + \int_a^{-1} x^n dF + \int_1^b x^n dF \\ &= (-1)^n \mu(\{-1\}) + \mu(\{1\}) + (-1)^n F(-1) - a^n F(a) \\ &- \int_a^{-1} nx^{n-1} F(x) dx + b^n F(b) - F(1) - \int_1^b nx^{n-1} F(x) dx \\ &= (-1)^n \mu(\{-1\}) + \mu(\{1\}) + (-1)^n F(-1) - F(1) \\ &- \int_a^{-1} nx^{n-1} F(x) dx - \int_1^b nx^{n-1} F(x) dx. \end{split}$$

Since $F \in L^{\infty}(a, -1)$ and $F \in L^{\infty}(1, b)$ and F is nonzero on a set of positive Lebesgue measure so we have $\inf_{n\geq 1} \int_{a}^{-1} nx^{n-1}F(x)dx = -\infty$, thus $\inf_{n\geq 1} (-\int_{a}^{-1} nx^{n-1}F(x)dx) = k$. Also we have $\sup_{n\geq 1} \int_{1}^{b} nx^{n-1}F(x)dx = +\infty$, thus $\inf_{n\geq 1} (-\int_{1}^{b} nx^{n-1}F(x)dx) = -\infty$. Hence we have $\inf_{n\geq 1} \int x^{n}d\mu = -\infty$ and $\sup_{n\geq 1} |\int x^{n}d\mu| = +\infty$. \Box

Corollary 2.8. Let μ be a finite positive regular Borel measure with compact support on the real line, the followings are equivalent:

- 1. The balanced convex-polynomials are weak^{*} dense in $L^{\infty}(\mu)$.
- 2. The balanced convex-polynomials are dense in $L^p(\mu)$ for all $1 \le p < \infty$.
- 3. For any f ∈ L^p(μ) with |f| > 0 μ a.e. the set {p(x)f(x) : p ∈ BCP} is dense in L^p(μ) when 1 ≤ p < ∞ and weak* dense in L[∞](μ).
 4. μ([-1,1]) = 0.

Proof. This follows from Corollary(2.4) and Theorem(2.7).

3. BALANCED CONVEX-CYCLIC MULTIPLICATION OPERATORS AND INVARIANT BALANCED CONVEX-SETS

Let $L^2_{\mathbb{R}}(\mu)$ be the real Hilbert space of all real-valued Lebesgue measurable functions that are square integrable with respect to μ .(See [2]). Also let $M_{x,\mu}$ denote the operator of multiplication by the independent variable x acting on $L^2_{\mathbb{R}}(\mu)$.

In this section we determine when $M_{x,\mu}$ is balanced convex-cyclic and characterize its balanced convex-cyclic vectors. We also determine the invariant balanced convex-sets for $M_{x,\mu}$ where $M_{x,\mu}$ is balanced convex-cyclic.

The next theorem will charactrize the balanced convex-cyclicity of the multiplication operator $M_{x,\mu}$.

Theorem 3.1. Let μ is a positive finite regular Borel measure with compact support in \mathbb{R} and $M_{x,\mu}$ is the multiplication operator on $L^2_{\mathbb{R}}(\mu)$, then we have:

- 1. $M_{x,\mu}$ is balanced convex-cyclic if and only if $\mu([-1,1]) = 0$.
- 2. If $M_{x,\mu}$ is balanced convex-cyclic, then the balanced convex-cyclic vectors for $M_{x,\mu}$ are the same as its cyclic vectors.

Proof. 1. If $M_{x,\mu}$ is balanced convex-cyclic, then from item 2 of proposition(2.1), we have $\mu([-1,1]) = 0$. Conversely, if $\mu([-1,1]) = 0$, then it follows from item 2 of corollary(2.8) that the balanced convex-polynomials are dense in $L^2_{\mathbb{R}}(\mu)$, which implies that $M_{x,\mu}$ is balanced convex-cyclic and the function f(x) = 1 is a balanced convex-cyclic vector for $M_{x,\mu}$.

2. Recall that the cyclic vector for $M_{x,\mu}$ are those functions $f \in L^2_{\mathbb{R}}(\mu)$ that satisfy

 $|f| > 0 \ \mu \ a.e.$ So, if f is a balanced convex-cyclic vector for $M_{x,\mu}$, then it is also a cyclic vector and thus must satisfy $|f| > 0 \ \mu \ a.e.$ Conversely, suppose that $M_{x,\mu}$ is balanced convex-cyclic and $f \in L^2_{\mathbb{R}}(\mu)$ satisfies $|f| > 0 \ \mu \ a.e.$ Since $M_{x,\mu}$ is balanced convex-cyclic we know from 1 that $\mu([-1,1]) = 0$ and since $|f| > 0 \ \mu \ a.e.$, corollary(2.8) item 3 says exactly that f is a balanced convex-cyclic vector for $M_{x,\mu}$.

Now we characterize the invariant closed balanced convex-sets for the operator $M_{x,\mu}$ when $\mu([-1,1]) = 0$.

Theorem 3.2. If $\mu \in M_c^+(\mathbb{R})$, then the followings are equivalent:

 The nonempty closed invariant balanced convex-sets for the multiplication operator M_{x,μ} on L²_ℝ(μ) are the same as the closed invariant subspaces for M_{x,μ}.
 μ([-1,1]) = 0.

Proof. (1) \Rightarrow (2) To show that $\mu([-1,1]) = 0$, suppose that $\mu([-1,1]) > 0$. We will obtain a contradiction. Let $S = \{f \in L^2_{\mathbb{R}}(\mu) : |f(x)| \leq 1 \text{ for } \mu \text{ a.e. } x \in [-1,1]\}$. S is a closed balanced convex-set in $L^2_{\mathbb{R}}(\mu)$ that is invariant under $M_{x,\mu}$. By our assumption that $\mu([-1,1]) > 0$, S is nonzero. Also by assumption 1, S is a subspace. But clearly S is not a subspace unless it is the zero subspace. This gives the contradiction and so $\mu([-1,1]) = 0$.

 $(2) \Rightarrow (1)$ Recall that a nonempty balanced convex-set is a subspace if and only if it is closed under scalar multiplication. So, it suffices to show that it is invariant under multiplication by nonzero scalars. So, let $A \neq \{0\}$ be a closed balanced convex-set in $L^2_{\mathbb{R}}(\mu)$ that is invariant under $M_{x,\mu}$. Let $f \in A \setminus \{0\}$, and let $r \in \mathbb{R} \setminus \{0\}$. Let $\vartheta = |f|^2 d\mu$ and consider the measure ϑ and the space $L^2_{\mathbb{R}}(\vartheta)$. Since $\mu([-1,1]) = 0$, it follows that $\vartheta([-1,1]) = 0$, and by item 4 of corollary(2.8), we know that the balanced convex-polynomials are dense in $L^2_{\mathbb{R}}(\vartheta)$. Hence there are nonzero balanced convex-polynomials $\{p_n\}_{n=1}^{\infty}$ such that $p_n \to r$ in $L^2_{\mathbb{R}}(\vartheta)$. So $\int |p_n f - rf|^2 d\mu = \int |p_n - r|^2 |f|^2 d\mu = \int |p_n - r|^2 d\vartheta \to 0$ as $n \to \infty$ and so $p_n f \to rf$ in $L^2_{\mathbb{R}}(\mu)$. Now since A is balanced convex and invariant under $M_{x,\mu}$ and $f \in A$ so $p_n f \in A$ for every n and $p_n f \to rf$ in $L^2_{\mathbb{R}}(\mu)$. Since A is a closed set, $rf \in A$. Thus A is invariant under scalar multiplication. Hence A is a subspace.

References

- GH.Baseri,A.I.Kashkooli and H.Rezaei, On the balanced convex hull of operator's orbit, Iran J Sci Technol Trans Sci.46(2022)659-665.
- [2] J. B. Conway, A Course in Functional Analysis, 2nd Editions, Springer-Verlag, 1990.
- [3] N.S. Feldman and P. McGuire, Convex Stone-Weierstrass Theorems and Invariant Convex Sets, Rocky Math. 49 (2019), no. 8, 2587-2611.
- [4] H.Rezaei, On the convex hull generated by orbit of operators, Linear Algebra and its Applications, 438(2013), 4190-4203.

GH.BASERI AND A.I.KASHKOOLY

(Gholam Reza Baseri) DEPARTMENT OF MATHEMATICS, FARHANGIAN UNIVERSITY, SHIRAZ, IRAN. *Email address*: ghhbaseri@gmail.com

(Ali Iloon Kashkooly) Department of Mathematics, College of Sciences, Yasouj University, Yasouj-75914-74831, Iran

Email address: kashkooly@yu.ac.ir

32