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A SURVEY ON EXISTENCE OF A SOLUTION TO FRACTIONAL
DIFFERENCE BOUNDARY VALUE PROBLEM WITH |u|p−2u TERM
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Abstract. In this paper, we deal with the existence of a non-trivial solution for the following
fractional discrete boundary-value problem for any k ∈ [1, T ]N0{

T+1∇α
k (k∇α

0 (u(k))) + k∇α
0 (T+1∇α

k (u(k))) + ϕp(u(k)) = λf(k, u(k)),

u(0) = u(T + 1) = 0,

where 0 < α < 1 and k∇α
0 is the left nabla discrete fractional difference and T+1∇α

k is the
right nabla discrete fractional difference f : [1, T ]N0 ×R → R is a continuous function, λ > 0
is a parameter and ϕp is the so called p-Laplacian operator defined as ϕp(s) = |s|p−2s and
1 < p < +∞. The technical method is variational approach for differentiable functionals.
Several examples are included to illustrate the main results.
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1. Introduction

Initial value problems in discrete fractional calculus considered in [4]. The first concepts
of fractional nabla differences traces back to the works of Gray and Zhang [21]. Discrete
fractional calculus with the nabla operator studied in [5]. In [6] authors studied two-point
boundary value problems for finite fractional difference equations. This kind of problems play
a fundamental role in different fields of research, for example in biological, Atici and Şengül
introduced and solved Gompertz fractional difference equation for tumor growth models [7].

We refer the reader to the new monograph [26] that works for differential and integral
equations and systems and for many theoretical and applied problems in mathematics, math-
ematical physics, probability and statistics, applied computer science and numerical methods.
Also we refer the reader to the recent monograph on the introduction to fractional nabla cal-
culus [15]. Another well-known monograph is [24] that is devoted to the systematic and
comprehensive exposition of classical and modern results in the theory of fractional integrals
and derivatives and their applications. It is well known that variational methods is an im-
portant tool to deal with the problems for differential and difference equations. Variational
methods for dealing with fractional difference equations with boundary value conditions have
appeared in [14, 23]. More, recently, in [13, 17, 18] by starting from the seminal papers [8, 9],
the existence and multiplicity of solutions for nonlinear discrete boundary value problems
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have been investigated by adopting variational methods.

There seems to be increasing interest in the existence of solutions to boundary value prob-
lems for finite difference equations with fractional difference operator during the last two
decades. In last decades, some researchers investigated q-fractional difference equations.
Later, q-fractional boundary value problems considered by many researchers; see for instance,
[25] and references therein.

The other important tool in the study of nonlinear difference equations is fixed point
methods; see, for instance, [16] and references therein. Morse theory is also other tool in the
study of nonlinear fractional differential equations [19].

The aim of this paper is to establish the existence of non-trivial solution for the following
discrete boundary-value problem
(1.1){

T+1∇α
k (k∇α

0 (u(k))) + k∇
α
0

(
T+1∇α

k (u(k))
)
+ ϕp(u(k)) = λf(k, u(k)), k ∈ [1, T ]N0 ,

u(0) = u(T + 1) = 0,

where 0 < α < 1 and k∇α
0 is the left nabla discrete fractional difference and T+1∇α

k is the right
nabla discrete fractional difference and ∇u(k) = u(k) − u(k − 1) is the backward difference
operator f : [1, T ]N0 × R → R is a continuous function, λ > 0 is a parameter and T ≥ 2 is
fixed positive integer and ϕp is the so called p-Laplacian operator defined as ϕp(s) = |s|p−2s
and 1 < p < +∞ and N1 = {1, 2, 3, · · · } and TN = {· · · T − 2, T − 1, T} and [1, T ]N0 is the
discrete set {1, 2, · · · , T − 1, T} = N1

∩
TN.

The term |u|p−2u in (1.1) and other nonlinear difference equations plays a fundamental
role in the modeling of many phenomena [20].

In this paper, based on a local minimum theorem (Theorem 2.4) due to Bonanno [10], we
ensure an exact interval of the parameter λ, in which the problem (1.1) admits at least a
non-trivial solution. As an example, here, we point out the following special case of our main
results.
Theorem 1.1. Let h : [1, T ] → R be a positive and essentially bounded function and g : R → R
be a nonnegative continuous function and

lim
d→0+

g(d)

d
= +∞, lim

c→+∞

g(c)

c
= 0.

Then for any
λ ∈

]
0,+∞

[
,

the problem

(1.2)
{

T+1∇α
k (k∇α

0 (u(k))) + k∇
α
0

(
T+1∇α

k (u(k))
)
= λh(k)g(u(k))− u(k), k ∈ [1, T ]N0 ,

u(0) = u(T + 1) = 0,

has at least one non-trivial solution in the space {u : [0, T + 1] → R : u(0) = u(T + 1) = 0}.
The rest of this paper is arranged as follows. In section 2, we provide some basic definitions

and preliminary results and fundamental functional and lemma and main tool (Theorem 2.4)
and in Section 3, we provide our auxiliary inequalities. In Section 4, we provide our main
results that contains several theorems and proof the special case of main result (Theorem 1.1)
finally, we illustrate the results by giving examples.
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2. Preliminaries

The following definitions will be helpful to our discuss.

Definition 2.1. [3] (i) Let m be a natural number, then the m rising factorial of t is written
as

(2.1) tm =

m−1∏
k=0

(t+ k), t0 = 1.

(ii) For any real number, the α rising function is increasing on N0 and

(2.2) tα =
Γ(t+ α)

Γ(t)
, such that t ∈ R\{· · · ,−2,−1, 0}, 0α = 0.

Definition 2.2. Let f be defined on Na−1
∩

b+1N, a < b, α ∈ (0, 1), then the nabla discrete
new (left Gerasimov-Caputo) fractional difference is defined by(

C
k ∇α

a−1f
)
(k) =

1

Γ(1− α)

k∑
s=a

∇sf(s)(k − ρ(s))−α, k ∈ Na,(2.3)

and the right Gerasimov-Caputo one by(
C
b+1∇α

kf
)
(k) =

1

Γ(1− α)

b∑
s=k

(−∆sf)(s)(s− ρ(k))−α, k ∈ bN,(2.4)

and in the left Riemann-Liouville sense by(
R
k ∇α

a−1f
)
(k) =

1

Γ(1− α)
∇k

k∑
s=a

f(s)(k − ρ(s))−α, k ∈ Na,(2.5)

=
1

Γ(−α)

k∑
s=a

f(s)(k − ρ(s))−α−1, k ∈ Na,(2.6)

and the right Riemann-Liouville one by(
R
b+1∇α

kf
)
(k) =

1

Γ(1− α)
(−∆k)

b∑
s=k

f(s)(s− ρ(k))−α, k ∈ bN,(2.7)

=
1

Γ(−α)

b∑
s=k

f(s)(s− ρ(k))−α−1, k ∈ bN,(2.8)

where ρ(k) = k − 1 be the backward jump operator.

For example, Let f(k) = 1 be defined on Na−1
∩

b+1N, therefore from (2.3) and (2.4), we
have [1]

(2.9) C
b+1∇α

k1 =C
k ∇α

a−11 = 0, k ∈ Na

∩
bN.

The relation between the nabla left and right Gerasimov-Caputo and Riemann-Liouville frac-
tional differences are as follow:

(2.10)
(
C
k ∇α

a−1f
)
(k) =

(
R
k ∇α

a−1f
)
(k)− (k − a+ 1)−α

Γ(1− α)
f(a− 1),
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(2.11)
(
C
b+1∇α

kf
)
(k) =

(
R
b+1∇α

kf
)
(k)− (b+ 1− k)−α

Γ(1− α)
f(b+ 1).

Thus by (2.9), (2.10) and (2.11), we have for any k ∈ Na
∩

bN,

(2.12) R
b+1∇α

k1 =
(b+ 1− k)−α

Γ(1− α)
, R

k ∇α
a−11 =

(k − a+ 1)−α

Γ(1− α)
.

Regarding the domains of the fractional type differences we observe:

(i) The nabla left fractional difference k∇α
a−1 maps functions defined on a−1N to functions

defined on aN.

(ii) The nabla right fractional difference b+1∇α
k maps functions defined on b+1N to functions

defined on bN.

As in [12] one can show that, for α → 0, one has k∇α
a (f(k)) → f(t) and for α → 1, one

has k∇α
a (f(k)) → ∇f(t). We note that the nabla Riemann-Liouville and Gerasimov-Caputo

fractional differences, for 0 < α < 1, coincide when f vanishes at the end points that is
f(a− 1) = 0 = f(b+ 1) [1]. Indeed, when 0 < α < 1, those conclude from (2.10) and (2.11).
So, for convenience, from now on we will use the symbol ∇α instead of R∇α or C∇α.
Now we present summation by parts formula in new discrete fractional calculus.

Theorem 2.3. ( [2, Theorem 4.4] Integration by parts for fractional difference) For functions
f and g defined on Na

∩
bN, a ≡ b (mod 1), and 0 < α < 1, one has

(2.13)
b∑

k=a

f(k)
(
k∇α

a−1g
)
(k) =

b∑
k=a

g(k)
(
b+1∇α

kf
)
(k).

Similarly,

(2.14)
b∑

k=a

f(k)
(
b+1∇α

kg
)
(k) =

b∑
k=a

g(k)
(
k∇α

a−1f
)
(k).

Our main tool is a local minimum theorem due to Bonanno (see [10, Theorem 5.1]), which
is recalled below (see also [10, Proposition 2.1]). Such a result is more general than [22,
Theorem 2.5] since the critical point, surely, is not zero.

First, for given Φ, Ψ : X → R, we defined the following functions

(2.15) β(r1, r2) = inf
v∈Φ−1(]r1,r2[)

supu∈Φ−1(]r1,r2[)Ψ(u)−Ψ(v)

r2 − Φ(v)
,

and

(2.16) ρ(r1, r2) = sup
v∈Φ−1(]r1,r2[)

Ψ(v)− supu∈Φ−1(]−∞,r1[)Ψ(u)

Φ(v)− r1
,

for all r1, r2 ∈ R, with r1 < r2.

Theorem 2.4. ([10, Theorem 5.1]) Let X be a reflexive real Banach space, Φ : X → R a
sequentially weakly semicontinuous coercive and continuously Gâteaux differentiable functional
whose Gâteaux derivative admits a continuous inverse on X∗ and Ψ : X → R a continuously
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Gâteaux differentiable functional whose Gâteaux derivative is compact. Put Iλ = Φ− λΨ and
assume that there are r1, r2 ∈ R, with r1 < r2, such that

β(r1, r2) < ρ(r1, r2),

where β and ρ are given by (2.15) and (2.16). Then, for each

λ ∈ Λ =

]
1

ρ(r1, r2)
,

1

β(r1, r2)

[
,

there is u0,λ ∈ Φ−1(]r1, r2[) such that Iλ(u0,λ) ≤ Iλ(u) for all u ∈ Φ−1(]r1, r2[) and I ′λ(u0,λ) =
0.

We refer to the paper [11] in which Theorem 2.4 has been successfully employed to the
existence of at least one non-trivial solution for two-point boundary value problems.

In order to give the variational formulation of the problem (1.1), let us define the finite
T−dimensional Banach space

W := {u : [0, T + 1]N0 → R : u(0) = u(T + 1) = 0},
which is equipped with the norm

∥u∥ :=

(
T∑

k=1

|u(k)|2
) 1

2

.

Let Φ : W → R be the functional

(2.17) Φ(u) :=
1

2

T∑
k=1

| (k∇α
0u) (k)|2 + |

(
T+1∇α

ku
)
(k)|2 + 1

p

T∑
k=1

|u(k)|p.

An easy computation ensures that Φ turns out to be of class C1 on W and Gateaux differen-
tiable with

Φ′(u)(v) =

T∑
k=1

(k∇α
0 (u(k))) (k∇α

0 v(k)) +
(
T+1∇α

k (u(k))
) (

T+1∇α
kv(k)

)
+

T∑
k=1

|u(k)|p−2u(k)v(k),

for all u, v ∈ W . To study the problem (1.1), for every λ > 0, we consider the functional
Iλ : W → R defined by

Iλ(u) := Φ(u)− λΨ(u), Ψ(u) :=

T∑
k=1

F (k, u(k)),(2.18)

where F (k, u) =
∫ u
0 f(k, t)dt.

Lemma 2.5. The function u be a critical point of Iλ in W , iff u be a solution of the problem
(1.1).

Proof. First, let u be a critical point of Iλ in W . Then by previous argument for all v ∈ W ,
I ′λ(u)(v) = 0 and u(0) = u(T + 1) = v(0) = v(T + 1) = 0. We applying the summation by
parts formulas (2.13) and (2.14) in Theorem 2.3. Thus, by selecting f(k) =

(
k∇α

a−1(u(k))
)



50 M. KHALEGHI MOGHADAM

and g(k) = v(k) defined on N1
∩

TN in (2.13) and selecting f(k) =
(
T+1∇α

k (u(k))
)

and
g(k) = v(k) defined on N1

∩
TN in (2.14), one has

0 = I ′λ(u)(v)

=

T∑
k=1

(k∇α
0 (u(k))) (k∇α

0 v(k)) +
(
T+1∇α

k (u(k))
) (

T+1∇α
kv(k)

)
+

T∑
k=1

|u(k)|p−2u(k)v(k)− λ
b∑

k=a

[f(k, u(k))] v(k)

=

T∑
k=1

v(k)
(
T+1∇α

k (k∇α
0 (u(k)))

)
+

T∑
k=1

v(k)
(
k∇α

0

(
T+1∇α

k (u(k))
))

+

T∑
k=1

|u(k)|p−2u(k)v(k)− λ

T∑
k=1

[f(k, u(k))] v(k)

=

T∑
k=1

v(k)
{(

T+1∇α
k (k∇α

0 (u(k)))
)
+
(
k∇α

0

(
T+1∇α

k (u(k))
))}

+
T∑

k=1

|u(k)|p−2u(k)v(k)− λ
T∑

k=1

[f(k, u(k))] v(k).

Bearing in mind v ∈ W is arbitrary, one get that(
T+1∇α

k (k∇α
0 (u(k)))

)
+
(
k∇α

0

(
T+1∇α

k (u(k))
))

+ |u(k)|p−2u(k)− λf(k, u(k)) = 0,

for every k ∈ [1, T ]N0 . Therefore, u is a solution of (1.1). Since u be arbitrary, we conclude
that every critical point of the functional Iλ in W , is a solution of the problem (1.1). On the
other hand, if u be a solution of (1.1), then the vice versa holds and the proof is completed. □

3. Auxiliary inequalities

Now we provide some inequalities used throughout the paper, which hold on the space W .
In the sequel, we will use the following inequality.

Lemma 3.1. For every u ∈ W , we have

∥u∥∞ := max
k∈[1,T ]

|u(k)| ≤ ∥u∥.(3.1)

Proof. It is clear. □

Lemma 3.2. For every u ∈ W , we have
1

p
(T + 1)

p(2−p)
4 ∥u∥p ≤ Φ(u) ≤ 2T (T + 1)∥u∥2 + 1

p
(T + 1)

(2−p)
2 ∥u∥p.(3.2)

Proof. Notice that for any positive real number α, the −α rising function of t, that is t−α is
decreasing on N0. Indeed,

(t+ 1)−α =
Γ(t+ 1− α)

Γ(t+ 1)
=

(t− α)Γ(t− α)

tΓ(t)
<

Γ(t− α)

Γ(t)
= (t)−α.
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Also, for any k ∈ [1, T ]N, one can conclude that (k − ρ(s))−α ≥ 0, for any s = 1, 2, 3, · · · , k,
and (s− ρ(k))−α ≥ 0, for any s = k, k + 1, k + 2, k + 3, · · · , T . By using the discrete Hölder
inequality, (T + 1)

p(2−p)
4 ∥u∥p ≤

∑T
k=1 |u(k)|p ≤ (T + 1)

2−p
2 ∥u∥p,∀u ∈ W and p > 2. Apply

the definitions (2.3) and (2.4) and make use of lower and upper values of t−α on its range to
obtain

Φ(u) − 1

p

T∑
k=1

|u(k)|p

=
1

2

T∑
k=1

| (k∇α
0u) (k)|2 + |

(
T+1∇α

ku
)
(k)|2

=
1

2

T∑
k=1

(
| 1

Γ(1− α)

k∑
s=1

∇su(s)(k − ρ(s))−α|2

+ | 1

Γ(1− α)

T∑
s=k

(−∆su(s))(s− ρ(k))−α|2
)

≤ 1

2

T∑
k=1

(
{ 1

Γ(1− α)

k∑
s=1

|∇su(s)|(k − ρ(s))−α}2

+ { 1

Γ(1− α)

T∑
s=k

| −∆su(s)|(s− ρ(k))−α}2
)

≤ 1

2

T∑
k=1

(
{ 1

Γ(1− α)

k∑
s=1

|∇su(s)|(1)−α|}2

+ { 1

Γ(1− α)

T∑
s=k

| −∆su(s)|(1)−α}2
)

=
1

2

T∑
k=1

(
{

k∑
s=1

|∇su(s)|}2 + {
T∑

s=k

| −∆su(s)|}2
)

=
1

2

T∑
k=1

(
{

k∑
s=1

|u(s)− u(s− 1)|}2 + {
T∑

s=k

|u(s)− u(s+ 1)|}2
)
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so

Φ(u) − 1

p

T∑
k=1

|u(k)|p

≤ 1

2

T∑
k=1

(
{

k∑
s=1

|u(s)− u(s− 1)|}2 + {
T∑

s=k

|u(s)− u(s+ 1)|}2
)

≤ 1

2

T∑
k=1

(
{

k∑
s=1

|u(s)|+ |u(s− 1)|}2 + {
T∑

s=k

|u(s)|+ |u(s+ 1)|}2
)

=
1

2

T∑
k=1

(
{

k∑
s=1

|u(s)|+
k∑

s=1

|u(s− 1)|}2 + {
T∑

s=k

|u(s)|+
T∑

s=k

|u(s+ 1)|}2
)

=
1

2

T∑
k=1

(
{

k∑
s=1

|u(s)|+ u(0) +
k∑

s=2

|u(s− 1)|}2

+ {
T∑

s=k

|u(s)|+ u(T + 1) +

T−1∑
s=k

|u(s+ 1)|}2
)

=
1

2

T∑
k=1

({ k∑
s=1

|u(s)|+
k−1∑
s=1

|u(s)|
}2

+
{ T∑

s=k

|u(s)|+
T∑

s=k+1

|u(s)|
}2)

≤ 1

2

T∑
k=1

( k∑
s=1

|u(s)|+
T∑

s=k+1

|u(s)|+
k−1∑
s=1

|u(s)|+
T∑

s=k

|u(s)|
)2

=
1

2

T∑
k=1

( T∑
s=1

|u(s)|+
T∑

s=1

|u(s)|
)2

= 2
T∑

k=1

({ T∑
s=1

|u(s)|
}2)

= 2(T + 1)
( T∑

s=1

|u(s)|
)2

≤ 2T (T + 1)

T∑
s=1

|u(s)|2,

thus

Φ(u) ≤ 2T (T + 1)
T∑

s=1

|u(s)|2 + 1

p

T∑
k=1

|u(k)|p

≤ 2T (T + 1)

T∑
s=1

|u(s)|2 + 1

p
(T + 1)

(2−p)
2

[ T∑
k=1

|u(k)|2
] p

2

≤ 2T (T + 1)∥u∥2 + 1

p
(T + 1)

(2−p)
2 ∥u∥p,
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on the other hand,

Φ(u) ≥ 1

p

T∑
k=1

|u(k)|p

≥ 1

p
(T + 1)

p(2−p)
4 ∥u∥p.

□

4. Main Results

First, let us introduce a function for convenience. For given two non-negative constants c
and d, put

ad(c) :=

∑T
k=1max|ξ|≤c F (k, ξ)−

∑T
k=1 F (k, d)

(c)p

p(T+1)
p(p−2)

4

− d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2 − Tdp

p

.

We state our main result as follows.

Theorem 4.1. Assume that there exist a non-negative constant c1 and two positive constants
c2 and d with

(A0) (c1)p

p(T+1)
p(p−2)

4

< d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2
+ Tdp

p < (c2)p

p(T+1)
p(p−2)

4

,

such that

(A1) ad(c2) < ad(c1).

Then for any λ ∈] 1
ad(c1)

, 1
ad(c2)

[ the problem (1.1) has at least one non-trivial solution u0 ∈ W .

Proof. Our aim is to apply Theorem 2.4 to our problem. To this end, take X = W , and put
Φ, Ψ and Iλ as in (2.17) and (2.18). We know Φ is a nonnegative continuously Gâteaux differ-
entiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative
admits a continuous inverse on X∗, and Ψ is a continuously Gâteaux differentiable functional
whose Gâteaux derivative is compact. By similar arguing in [11], put

v̄(k) =

{
d k ∈ [1, T ]N0 ,

0 k = 0, T + 1,

r1 = (c1)p

p(T+1)
p(p−2)

4

and r2 = (c2)p

p(T+1)
p(p−2)

4

. Clearly v̄ ∈ W . Since v̄ vanishes at the end points

that is v̄(0) = 0 = v̄(T+1), thus its nabla Riemann-Liouville and Gerasimov-Caputo fractional
differences coincide, hence for any k ∈ N1

∩
TN(

T+1∇α
k v̄
)
(k) =

(
R
T+1∇α

k v̄
)
(k) =

(
C
T+1∇α

k v̄
)
(k) =

d(T + 1− k)−α

Γ(1− α)
,

(k∇α
0 v̄) (k) =

(
R
k ∇α

0 v̄
)
(k) =

(
C
k ∇α

0 v̄
)
(k) =

d(k)−α

Γ(1− α)
.
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So, we have

Φ(v̄) =
1

2

T∑
k=1

| (k∇α
0 v̄) (k)|2 + |

(
T+1∇α

k v̄
)
(k)|2 + 1

p

T∑
k=1

|v̄(k)|p

=
1

2

T∑
k=1

| d(k)−α

Γ(1− α)
|2 + |d(T + 1− k)−α

Γ(1− α)
|2 + Tdp

p

=
d2

2 (Γ(1− α))2

T∑
k=1

|(k)−α|2 + |(T + 1− k)−α|2 + Tdp

p

=
d2

(Γ(1− α))2

T∑
k=1

|(k)−α|2 + Tdp

p

=
d2

(Γ(1− α))2

T∑
k=1

(
(k)−α

)2
+

Tdp

p
,

and

Ψ(v̄) =

T∑
k=1

F (k, v̄(k)) =

T∑
k=1

F (k, d).

Moreover, for all u ∈ W such that Φ(u) < ri, i = 1, 2, taking (3.1) and (3.2) into account,
one has maxk∈[1,T ] |u(k)| ≤ ci, i = 1, 2. Therefore,

sup
u∈Φ−1(−∞,ri)

Ψ(u) = sup
Φ(u)<ri

T∑
k=1

F (k, u(k)) ≤
T∑

k=1

max
|ξ|≤ci

F (k, u(k)), i = 1, 2.

By (A0), v̄ ∈ Φ−1(r1, r2), hence,

0 ≤ β(r1, r2) ≤
supu∈Φ−1(r1,r2)Ψ(u)−Ψ(v̄)

r2 − Φ(v̄)

≤
supu∈Φ−1(−∞,r2)Ψ(u)−Ψ(v̄)

r2 − Φ(v̄)

≤
∑T

k=1max|ξ|≤c2 F (k, ξ)−
∑T

k=1 F (k, d)
(c2)p

p(T+1)
p(p−2)

4

− d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2 − Tdp

p

= ad(c2).

On the other hand, one has

ρ(r1, r2) ≥
Ψ(v̄)− supu∈Φ−1(−∞,r1)Ψ(u)

Φ(v̄)− r1

≥
∑T

k=1 F (k, d)−
∑T

k=1max|ξ|≤c1 F (k, ξ)

d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2
+ Tdp

p − (c1)p

p(T+1)
p(p−2)

4

≥
∑T

k=1max|ξ|≤c1 F (k, ξ)−
∑T

k=1 F (k, d)
(c1)p

p(T+1)
p(p−2)

4

− d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2 − Tdp

p

= ad(c1).
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Hence, from Assumption (A1), we get β(r1, r2) < ρ(r1, r2).
Therefore, owing to Theorem 2.4, for each λ ∈] 1

ad(c1)
, 1
ad(c2)

[, the functional Iλ admits one
critical point u0 ∈ W such that r1 < Φ(u0) < r2. Hence, the proof is completed. □

We now present an example to illustrate the result of Theorem 4.1.

Example 4.2. Put c1 = 0.1, c2 = 20, d = 0.2 and by taking α = 0.5, T = 9, p = 4 and
calculating, a0.2(0.1) = 63.722 and a0.2(20) = 11.980. Indeed 1

(Γ(0.5))2
∑10

k=1

(
(k)−0.5

)2
=

1.791343942, hence A(0) reduce to

(c1)
4

400
<

d2

(Γ(0.5))2

10∑
k=1

(
(k)−0.5

)2
+

9d4

4
<

(c2)
4

400
,

and then
(c1)

4

400
< 1.791343942d2 + 2.25d4 <

(c2)
4

400
,

where it holds, since 0.00000025 < 0.07525375768 < 400. Therefore

ad(c1) =

∑T
k=1max|ξ|≤c1 F (k, ξ)−

∑T
k=1 F (k, d)

(c1)p

p(T+1)
p(p−2)

4

− d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2 − Tdp

p

=

∑10
k=1max|ξ|≤c1

1
4ξ

3(ln k+1
k )−

∑10
k=1

1
4d

3(ln k+1
k )

(c1)4

400 − d2

(Γ(0.5))2
∑10

k=1

(
(k)−0.5

)2
− 9d4

4

=
1
4(c

3
1 − d3)

∑10
k=1(ln

k+1
k )

(c1)4

400 − 1.791343942d2 − 2.25d4

=
1
4(0.1

3 − 0.23) ln(11)
(0.1)4

400 − 1.791343942(0.22)− 2.25(0.24)
= 63.722,

and

ad(c2) =

∑T
k=1max|ξ|≤c2 F (k, ξ)−

∑T
k=1 F (k, d)

(c2)p

p(T+1)
p(p−2)

4

− d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2 − Tdp

p

=

∑10
k=1max|ξ|≤c2

1
4ξ

3(ln k+1
k )−

∑10
k=1

1
4d

3(ln k+1
k )

(c2)4

400 − d2

(Γ(0.5))2
∑10

k=1

(
(k)−0.5

)2
− 9d4

4

=
1
4(c

3
2 − d3)

∑10
k=1(ln

k+1
k )

(c2)4

400 − 1.791343942d2 − 2.25d4

=
1
4(20

3 − 0.23) ln(11)
(20)4

400 − 1.791343942(0.22)− 2.25(0.24)
= 11.980.

Then, for every λ ∈]0.016, 0.083[ the problem{
10∇α

k (k∇α
0 (u(k))) + k∇

α
0 (10∇

α
k (u(k))) + ϕ4(u(k)) =

3
4λu(k)

2(ln k+1
k ), k ∈ [1, 9],

u(0) = u(10) = 0,
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has at least one non-trivial solution u0.
Here we point out an another immediate consequence of Theorem 4.1 as follows.

Theorem 4.3. Let f : [1, T ]N0 × R → R be a nonnegative continuous function and assume
that there exist two positive constants c and d with

(A0) d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2
+ Tdp

p < (c)p

p(T+1)
p(p−2)

4

,

such that

(A1)
∑T

k=1 F (k,d)
d2

(Γ(1−α))2

∑T
k=1((k)−α)

2
+Tdp

p

> p(T + 1)
p(p−2)

4

∑T
k=1 max|ξ|≤c F (k,ξ)

cp .

Then for any

λ ∈

 d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2
+ Tdp

p∑T
k=1 F (k, d)

,
cp

p(T + 1)
p(p−2)

4
∑T

k=1max|ξ|≤c F (k, ξ)

 ,

the problem (1.1) has at least one non-trivial solution in W .
Proof. Applying Theorem 4.1, we have the conclusion, by picking c1 = 0 and c2 = c. Indeed,
owing to our assumptions, one has

ad(0) =

∑T
k=1 F (k, d)

d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2
+ Tdp

p

>

∑T
k=1max|ξ|≤c F (k, ξ)−

∑T
k=1 F (k, d)

(c)p

p(T+1)
p(p−2)

4

− d2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2 − Tdp

p

= ad(c).

Hence, the proof is completed. □
Theorem 4.4. Let h : [1, T ] → R be a positive and essentially bounded function and g : R → R
be a nonnegative continuous function and assume that there exist two positive constants c and
d with d2

(
2

(Γ(1−α))2
∑T

k=1

(
(k)−α

)2
+ T

)
< c2,

such that ∫ d
0 g(t)dt

d2
>

(
2

(Γ(1− α))2

T∑
k=1

(
(k)−α

)2
+ T

) ∫ c
0 g(t)dt

c2
.

Then for any

λ ∈

 2
(Γ(1−α))2

∑T
k=1

(
(k)−α

)2
+ T

2
∑T

k=1 h(k)

d2∫ d
0 g(t)dt

,
1

2
∑T

k=1 h(k)

c2∫ c
0 g(t)dt

 ,

the problem (1.2) has at least one non-trivial solution in the space {u : [0, T +1] → R : u(0) =
u(T + 1) = 0}.



A SURVEY ON EXISTENCE OF A SOLUTION 57

Remark 4.5. We point out Theorem 4.4 is an immediate consequence of Theorem 4.3, by
selecting p = 2 and f(k, t) = h(k)g(t) for all (k, t) ∈ [1, T ]N0 × R be separable variable which
satisfies (A0) and (A1).

Proof of Theorem 1.1:
For fixed λ > 0 as in the conclusion, the condition limd→0+

g(d)
d = +∞ implies limd→0+

∫ d
0 g(t)dt

d2
=

+∞, therefor there exists positive fixed constant d such that

2
(Γ(1−α))2

∑T
k=1

(
(k)−α

)2
+ T

2
∑T

k=1 h(k)

d2∫ d
0 g(t)dt

< λ.

On the other hand for fixed λ < +∞ as in the conclusion, the condition limc→+∞
g(c)
c = 0

implies limc→+∞

∫ c
0 g(t)dt

c2
= 0, so for fixed d a positive constant c satisfying

d2

(
2

(Γ(1− α))2

T∑
k=1

(
(k)−α

)2
+ T

)
< c2,

can be chosen such that

λ <
1

2
∑T

k=1 h(k)

c2∫ c
0 g(t)dt

.

Hence, the conclusion follows from Theorem 4.4. Finally we present an example of Theorem
1.1.

Example 4.6. The following discrete boundary-value problem

(4.1)
{

T+1∇α
k (k∇α

0 (u(k))) + k∇
α
0

(
T+1∇α

k (u(k))
)
= λe−u(k) − u(k), k ∈ [1, T ]N0 ,

u(0) = u(T + 1) = 0,

for any λ ∈
]
0,+∞

[
, has at least one non-trivial solution u0, since limc→+∞

e−c

c = 0 and

limd→0+
e−d

d = ∞.
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